
Astro 501: Radiative Processes

Lecture 4

Jan 21, 2013

Announcements:

• Problem Set 1 at start of class next Friday

Erratum: err, we’re ASTR 501 in 2013, not Cosmo in 2010!

Erratum: find the source function Sν for 2(c), not 2(a)

Erratum: Problem 3c: cite full of typos, should read

Hoffmann, Tappert, et al (1998) 1998A&AS..128..417H

and Table 3 is from http://cdsarc.u-strasbg.fr/vizier/ftp/cats/VII/199/ReadMe

• Office hours: BDF today 3-4pm, or by appointment

TA: tomorrow 1:30-3:00pm

Last time: ingredients of radiative transfer

• free space Q: meaning? Iν result? significance?

• emission Q: how quantified? example?

• absorption Q: how quantified? example?
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free space:

no emission, absorption, scattering → Iν1 = Iν2

dIν

ds

free
= 0 (1)

this means: when viewing an object across free space,

the intensity of the object is constant

regardless of distance to the object!

⇒ conservation of surface brightness

emission: emission coefficient is

jν =
dEemit

dV dt dΩ dν
(2)

and the intensity change is

dIν
sources

= jν ds (3)
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absorption: modeled as:

dIν = −αν Iν ds (4)

in terms of absorption cross section σν or opacity κν

dIν
abs
= −na σν Iν ds = ρ κν Iν ds (5)

which has the expected form, with

αν = na σν (6)

note that absorption depends on

• microphysics via the cross section σν

• astrophysics via density nabs of scatterers

often, write αν = ρκν,

defines opacity κν = (n/ρ)σν ≡ σν/m

with m = ρ/n the mean mass per absorber

Q: so what determines σν? e.g., for electrons?
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Cross Sections

Note that the absorption cross section σν is

and effective area presented by absorber

for “billiard balls” = neutral, opaque, macroscopic objects

this is the same as the geometric size

but generally, cross section is unrelated to geometric size

e.g., electrons are point particles (?) but still scatter light

• so generalize our ideas so that

dIν = −na σν ds defines the cross section

• determined by the details of light-matter interactions

• can be–and usually is!–frequency dependent

• differ according to physical process

the study of which will be the bulk of this course!

Note: “absorption” here is anything removing energy from beam

→ can be true absorption, but also scattering
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The Equation of Radiative Transfer

Now combine effects of sources and sinks

that change intensity as light propagates

dIν

ds
= −ανIν + jν (7)

equation of radiative transfer

0

s

s

ds

• fundamental equation in this course

• sources parameterized via jν

• sinks parameterized via αν = na σν = ρκν
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Transfer Equation: Limiting Cases

equation of radiative transfer:

dIν

ds
= −ανIν + jν (8)

Sources but no Sinks

if sources exist but there are no sinks: αν = 0

dIν

ds
= jν (9)

solve along path starting at sightline distance s0:

Iν(s) = Iν(s0) +

∫ s

s0
jν ds′ (10)

• the increment in intensity is due to

integral of sources along sightline

• for jν → 0: free space case

and Iν(s) = Iν(s0): recover surface brightness conservation!
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Special Case: Sinks but no Sources

if absorption only, no sources: jν = 0

dIν

ds
= −ανIν (11)

and so on a sightline from s0 to s

Iν(s) = Iν(s0) e
−

∫ s
s0

αν ds′
(12)

• intensity decrement is exponential!

• exponent depends on line integral of absorption coefficient

useful to define optical depth via dτν ≡ αν ds

τν(s) =

∫ s

s0
αν ds′ (13)

and thus for absorption only Iν(s) = Iν(s0)e
−τν(s)
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Mean Free Path

Average optical depth is

〈τν〉 =

∫

τνe−τνdτν
∫

e−τνdτν
= 1

for constant density na, this occurs

at the mean free path

ℓmfp,ν =
1

na σν

average distance between collisions

similarly mean free time between collisions

τν =
ℓmfp,ν

c
(14)

where we used v = c for all photons
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Optical Depth

optical depth, in terms of cross section

τν(s) =

∫ s

s0
na σν ds′ =

∫ s

s0

ds′

ℓmfp,ν
(15)

= number of mean free paths (16)

optical depth counts mean free paths along sightline

i.e., typical number of absorption events

Limiting cases:

•τν ≪ 1: optically thin

absorption unlikely → transparent

•τν ≫ 1: optically thick

absorption overwhelmingly likely → opaque
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Column Density

Note “separation of variables” in optical depth

τν(s) = σν︸︷︷︸

∫ s

s0
na(s

′) ds′

︸ ︷︷ ︸

microphysics astrophysics

(17)

From observations, can (sometimes) infer τν Q: how?

but cross section σν fixed by absorption microphysics

i.e., by theory and/or lab data

absorber astrophysics controlled by column density

Na(s) ≡
∫ s

s0
na(s

′) ds′ (18)

line integral of number density over entire line of sight s

cgs units [Na] = [cm−2]

Q: what does column density represent physically?
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column density

Na(s) ≡
∫ s

s0
na ds′

so τν = σνNa

0

s

s

ds

• column density is projection of 3-D absorber density

onto 2-D sky, “collapsing” the sightline

“cosmic roadkill”

• if source is a slab ⊥ to sightline,

then Na is surface density

• if source is multiple slabs ⊥ to sightline,

then Na sums surface density of all slabs

Q: from Na, how to recover 3-D density na?

1
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Radiation Transfer Equation, Formal Solution

equation of transfer

dIν

ds
= −ανIν + jν (19)

divide by αν and rewrite

in terms of optical depth dτν = ανds

dIν

dτν
= −Iν + Sν (20)

with the source function

Sν =
jν

αν
=

jν

naσν
(21)

Q: source function dimensions?
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Source Function

Sν = jν/αν has dimensions of surface brightness
What does it represent physically?

consider the case where the same matter
is responsible for both emission and absorption; then:
• αν = nσν, with n the particle number density
• jν = n dLν/dΩ, with dLν/dΩ the specific power

emitted per particle and per solid angle
and thus we have

Sν =
dLν/dΩ

σν
(22)

specific power per unit effective area and solid angle
→ effective surface brightness of each particle!

spoiler alert: Sν encodes emission vs absorption relation
ultimately set by quantum mechanical symmetries
e.g., time reversal invariance, “detailed balance”
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Radiative Transfer Equation: Formal Solution

dIν

dτν
= −Iν + Sν (23)

If emission independent of Iν (not always true! Q: why?)

Then can formally solve

Write Iν = Φνe−τν, i.e., use integrating factor e−τν, so

d(Φνe−τν)

dτν
= e−τν

dΦν

dτν
− Φνe−τν (24)

= −Φνe−τν + Sν (25)

and so we have
dΦν

dτν
= e+τνSν(τν) (26)

and thus

Φν(s) = Φν(0) +
∫ τν

0
eτ ′ν Sν(τ

′
ν) dτ ′ν (27)
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Φν(s) = Φν(0) +

∫ τν(s)

0
eτ ′ν Sν(τ

′
ν) dτ ′ν (28)

and then

Iν(s) = Φν(s) e−τν(s) (29)

= Iν(0) e−τν(s) +
∫ τν(s)

0
e−[τν(s)−τ ′ν] Sν(τ

′
ν) dτ ′ν (30)

in terms of original variables

Iν(s) = Iν(0)e
−[τν(s)−τν(s0)] +

∫ s

s0
e−[τν(s)−τν(s′)] jν(τ

′
ν) ds′

Q: what strikes you about these solutions?1
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Formal solution to transfer equation:

Iν(s) = Iν(0) e−τν(s) +
∫ τν(s)

0
e−[τν(s)−τ ′ν] Sν(τ

′
ν) dτ ′ν (31)

in terms of original variables

Iν(s) = Iν(0)e
−[τν(s)−τν(s0)] +

∫ s

s0
e−[τν(s)−τν(s′)] jν(τ

′
ν) ds′

• initial intensity degraded by absorption

• added intensity depends on sources along column

but optical depth weights against sources with τν
>∼ 1
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Formal Solution: Special Cases

For spatially constant source function Sν = jν/αν:

Iν(s) = e−τν(s)Iν(0) + Sν

∫ τν(s)

0
e−[τν(s)−τ ′ν] dτ ′ν (32)

= e−τν(s)Iν(0) +
(

1 − e−τν(s)
)

Sν (33)

• optically thin: τν ≪ 1

Iν ≈ (1 − τν)Iν(0) + τνSν

• optically thick: τν ≫ 1

Iν → Sν

→ optically thick intensity is source function!

what’s going on? rewrite:

dIν

ds
= −

1

ℓmfp,ν
(Iν − Sν) (34)

Q: what happens if Iν < Sν? if Iν > Sν?

Q: lesson? characteristic scales?

1
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Radiation Transfer as Relaxation

dIν

ds
= −

1

ℓmfp,ν
(Iν − Sν) (35)

• if Iν<Sν, then dIν/ds>0:

→ intensity increases along path

• if Iν>Sν, intensity decreases

equation is “self regulating!”

Iν “relaxes” to “attractor” Sν

and characteristic lengthscale for relaxation is mean free path!

recall Sν = ℓmfp,νjν ≈: this is “source-only” result

for sightline pathlength s = ℓmfp,ν

1
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Blackbody Radiation

1
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Radiation and Thermodynamics

consider an enclosure (“box 1”)

in thermodynamic equilibrium at temperature T

the matter in box 1

• is in random thermal motion

• will absorb and emit radiation

details of which depends on

the details of box material and geometry

• but equilibrium

→ radiation field in box doesn’t change

Iν,1T

box 1

open little hole: escaping radiation has intensity Iν,12
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now add another enclosure (“box 2”), also at temperature T

but made of different material

IνIν

filter

T T

box 1 box 2

,2
,1

separate boxes by filter passing only frequency ν

radiation from each box incident on screen

Q: imagine Iν,1 > Iν,2; what happens?

Q: lesson?
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Blackbody Radiation

if both boxes at same T ⇒ no net energy transfer

but this requires Iν,1 = Iν,2 and so the radiation is:

• independent of the composition of the box

• a universal function of T

• blackbody radiation with intensity Bν(T)

Spoiler alert (useful for PS1): blackbody radiation

Bν(T) =
2h

c2
ν3

ehν/kT − 1
(36)

with h = Planck’s constant, k = Boltzmann’s constant

in wavelength space

Bλ(T) = 2hc2
λ−5

ehc/λkT − 1
(37)
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blackbody integrated intensity:

B(T) =

∫

Bν(T) dν =

∫

Bλ(T) dλ (38)

=
2π4

15

k4T4

c3h3
=

σ

π
T4 =

c

4π
aT4 (39)

blackbody flux

Fν(T) = πBν(T) =
2πh

c2
ν3

ehν/kT − 1
(40)

F(T) = πB(T) ≡ σT4 =
2π5

15

k4T4

c2h3
(41)

defines Stefan-Boltzmann constant

σ =
2π5

15

k4

c2h3
= 5.670 × 10−5 erg cm−2 s−1 K−4 (42)

Q: to order of magnitude: integrated number density?
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Note: blackbody quantities determined entirely by T

no adjustable parameters!

mean number density: dimensions [n] = [length−3]

can only depend on T , and physical constants h, c, k

can form only one length: [hc/kT ] = [length]

→ expect n ∼ (hc/kT)3

photon number density

nν(T) =
4πBν(T)

hcν
=

8π

c3
ν2

ehν/kT − 1
(43)

n(T) = 16πζ(3)

(
kT

hc

)3

(44)

where ζ(3) = 1 + 1/23 + 1/33 + 1/43 + · · · = 1.2020569 . . .

Q: implications?
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blackbody photon number density

n(T) = 16πζ(3)

(
kT

hc

)3

(45)

i.e., n ∝ T3

So if temperatures changes, photon number changes

blackbody photon number is not conserved

photons massless → can always make more!

if heat up, photon number increases

and spectrum relaxes to blackbody form

blackbody energy density?

to order of magnitude, expect u ∼ nkT ∼ (kT)4/(hc)3

2
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integrated energy density

uν(T) =
4πBν(T)

c
=

8πh

c3
ν3

ehν/kT − 1
(46)

u(T) =
4πB(T)

c
=

8π5

15

k4T4

c3h3
(47)

≡ aT4 =
4σ

c
T4 (48)

defines Stefan-Boltzmann radiation density constant a = 4σ/c

mean photon energy:
only one way to form an energy
→ expect 〈E〉 ∼ kT

exact result:

〈E〉 ≡
u(T)

n(T)
(49)

=
π4

30ζ(3)
kT = 2.701 kT (50)
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Director’s Cut Extras
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Radiative Forces

generalize our definition of flux:

energy flux in direction n̂ is

~Fν =

∫

Iν n̂ dΩ (51)

recovers old result if we take ẑ · ~Fν

each photon has momentum E/c, and so

momentum per unit area and pathlength

absorbed by medium with absorption coefficient αν:

~F =
d~p

dt dA ds
=

1

c

∫

αν ~Fν dν (52)

but dA ds = dV , and d~p/dt is force,

so ~F is the force density

i.e., force per unit volume, on absorbing matter
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force per unit mass is

~f =
~F

ρ
=

1

c

∫

κν ~Fν dν (53)

Note: we have accounted only force due to

absoption of radiation

What about emission?

If emission is isotropic, no net force

if not, must include this as a separate term
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