Astro 501: Radiative Processes
Lecture 7
Jan 30, 2013

Announcements:
e Problem Set 2 sue at start of class Friday

Last time: Kirchhoff's law
Q. what is it?
Q: why might it seem like a miracle?
Q: why might it not seem like a miracle?
hint—consider emission/absorption if Kirchhoff not true?
Q. what's the difference between a thermal radiation
H and blackbody radiation?



Kirchhoff’'s Law Recap

Kirchhoff: any matter in thermal equilibrium at T
Su(T) = Bu(T)
jl/(T) — OéV(T) BI/(T)

e emission rate related to absorption rate
e good emitters are good absorbers

How does emission “know’ to be related to absorption?
If emission exceeded absorption, matter loses energy
would cool until emission = absorption

condition of equilibrium enforces ‘“detailed balance”

thermal radiation: emitted by any matter at T’
blackbody radiation: emitted optically thick matter at T’

(1)
(2)
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Two-Level Systems in Radiative Equilibrium

consider an ensemble of systems (“atoms”) with
e two discrete energy levels £, E>
e and degeneracies g1, go
i.e., a number gy of distinct states have energy E1

AE=hy, absorption

level 2: E,, g,

emission

level 1: E , g,

in thermodynamic equilibrium at 7', emission and absorption
exchange energy with photon field

Q: when & why emit? absorb?
Q. connection between emission, absorption rates in ensemble?



Spontaneous Emission

in general, atoms in states with higher energy FE-»
will decay to lower level E4
photon of energy AFE = E> — E1 = hrg will be emitted

transition can occur without influence of other atoms, photons
spontaneous emission: Xo — X1 + hv

spontaneous emission rate per atom is
E-> — E4 transition rate per atom:

transition probability per unit time per atom = Aoy (3)

e "Einstein A" coefficient

e units [A>1] = [sec™ 1]

e spontaneous:. A,y independent of T

e but Aoy does depend on detailed atom properties



ADbsorption

atoms in lower state Eq only promoted to state E»
by absorbing a photon of energy AFE
hv 4 X1 — Xo

if levels were perfectly sharp, absorb only at AE = hrg
but in general, energy levels have finite width

i.e., line energies ‘“smeared out” by some amount h Anu
SO transitions can be made by photons with frequencies
vo—Av S v Svg+ Av

useful to define line profile function ¢(v) |
with normalization [¢(v) dv =1
e.g., Gaussian, Lorentzian, Voight functions o(v)

o |imiting case of sharp levels Av — O:

¢(v) = 6(v — o)



absorptions require ambient photons

thus absorption rate per atom depends on photon field
and ensemble average absorption rate
depends on average intensity

,]_E/c/b(z/) Jy, dv

limiting case of sharp levels: J — J,,

thus write average absorption rate as

transition probability per time per atom = BjoJ

“Einstein B coefficient”

Bq1o is probability per time per intensity
depends on atom and state details

but does not depend on T’

(4)

(5)



Stimulated Emission

Einstein postulated a new emission mechanism:
driven by photons with transition energy vo — Av S v S vg+ Av
hV—|—X2 —>X1—|—2h1/

I.e., the presence of transition photons creates “peer pressure”
“encourages’” atoms in higher state to make transition

faster than they would spontaneously: stimulated emission
plausible? yes—photons interact with and perturb atoms

if stimulated emission exists, should also depend on J

— rate per atom is

transition probability per time per atom = BsyJ (6)

e Note stimulated emission coefficient Boq
can be different from absorption coefficient Bqo
e if stimulated emission doesn't happen, would find Bo1 =0



The Equilibrium Condition

In thermodynamic equilibrium, the numbers nq,n-o
of atoms in each state do not change with time
— total emission rate is equal to absorption rate

noAs1 + npBpy1J = n1BioJ
solve for ambient radiation field

Az1/B21
ni/no Bi1a/Bo — 1
in thermodynamic equilibrium, atom state populations
follow Boltzmann distribution

o—E1/kT

J =

ny_ 91 _ 91 (Bx—E1)/kT _ 91 hvo/kT
_ —E5/kT o
ny  goe 2 g1 g1
and so
_ A-1/B
7 — 21/B21

g1/9> Bio/Boy eto/kT 1

(7)

(8)

(9)

(10)



thus we find that in equilibrium,
the mean intensity near vg is

An1/B21

/= 11
91/9> B1n/Bo1 eto/kT 1 (11)

but in equilibrium, and with narrow linewidth,
the mean intensity should be blackbody result:

2hu3/c?

(12)

Q: what condition(s) must hold to satisfy
both equations for any T'7
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because A and both B do not depend on T
the only way to have, at any T,

7 2hv3/c? Az1/B12

IS to require two Einstein relations

2h 3
A21 s—bB21
C
g2B21 = g1B1o

e these relations are independent of T
hold even without thermal equilibrium!
e B>1 #= 0: spontaneous emission exists!

and typically has probability comparable to absorption!

give it up for Big All

"/ — 1 g1/gs Bi2/Boy eM/kT —1

(13)

(14)
(15)
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Two-Level Systems: Thermal Radiation

Now consider the two-level atom as a radiating system
What are the emission and absorption coefficients?

Emission Coefficient

spontaneous emission rate per atom in state 2: A>q

— rate per volume: noAoq

— total power emitted per volume: hrgnoAonq

emission isotropic — power per volume per solid angle:
hVO n2A21/47T Q. why?

but still need frequency spectrum
of emitted radiation, i.e., emission profile

Q. simplest assumption?
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simplest assumption (generally accurate):
— emission spectrum profile = absorption profile ¢(v)

and thus energy released in spontaneous emission is

hvo
dE = %ngAglgb(z/) dV dt dv dS

and thus the emission coefficient is

, hvg
Ju = 4—nzA21¢(V)

(16)

(17)
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absorption coefficient
absorption rate per atom in level 1: BioJ
thus energy absorbed is

hvg
d& = 200 B> T dV dt (18)
41
but 4nJ = [dQ2 [ I,¢(v) dv, so
hvg
d&é = 4—7’&1312]1/(]5(1/) dV dt dS2 dv (19)
T

recall: path element ds in area dA has volume dV = ds dA and
so we find absorption coefficient

hvg
Qaps,y = 4—7%1312(/5@) (20)

..but we are not done! Q: because...?
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stimulated emission
tempting to include this as additional emission term

but wait! stimulated emission depends on (average) intensity
— formally more similar to absorption

formally better to treat stimulated emission as
a negative absorption term:

hvg
Qstim,y = —Enszlfb(V) (21)

and then (net) absorption coefficient

oy — C“abs,u‘l‘astim,z/ (22)

hvg

— Hqﬁ(y) (nlBlg—nngl) (23)
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T wo-Level Radiation Transfer

Transfer equation for two-level atom

dl hvg hvg
—2 = ——2¢() (n1B1s —noBo1) [, + ——noAs1p(v)  (24)
ds 41 41
source function
A
S, — noA21 (25)
n1B1o —noyBoq
Einstein relations give
hu n
ay = —2¢) n1Bio (1 - —29—1) (26)
%y n1 go
2h 3,2
S, = vi/e (27)

(n1/n2)(92/91) — 1
a generalization of Kirchhoff's laws
these do not assume thermal equilibrium!

Q. interesting cases?
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Local Thermodynamic Equilibrium

if atom levels are in thermodynamic equilibrium
then we have ny/no = (g1/92)e™/kT" and

2hu3/c?

S, =
o ehv /KT _

1 — BI/(T) (28)

we recover the usual Kirchhoff's law! as we must!

and absorption term becomes
hvg
o = 6(v) n1Bia (1 /M) (29)
i.e., "uncorrected” term minus stimulated emission correction
What if not in thermodynamic equilibrium?

then nq1/nq1 % Boltzmann expression
emission is nothermal
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Inverted Populations

two-level absorption coefficient is:

hv n
ay = ——¢(v) ni1B1o (1 - —29—1> (30)
47 n1 go

note that the algebraic sign

depends on population levels, i.e., on ny/nq
normally, lower level more populated: ny > no

If we can arrange or stumble upon a system where
ny _no

— < — (31)
g1 g2

i.e., an inverted population, then o, < 0!

Q: and then what happens to propagating light?
Q. examples?

Q. how might we arrange an inverted population?
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Masers

if ap < 0, then propagating light has
exponential increase in intensity!

stimulated emission causes a ‘‘cascade” of photons

in lab: create inverted populations of atoms
use mirrors to ‘recycle’” stimulating photons
— this is a laser! light amplification by stimulated emission of radiation

in cosmos: inverted populations of molecules

Maser. microwave amplification by stimulated emission of radiation

how to create inversion?
need nonthermal mechanism to “pump’” upper level
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Scattering




0c

Pure Scattering

Consider an idealized case with radiation propagating
through a medium with “pure scattering,” i.e.,
scattering, but no emission, and no absorption

Recall: intensity in a ray is a directional quantity
i.e., really I, = 1,(0,¢) = I,(n),
with n a unit vector toward I(6, ¢)

iIn general: scattering will change both

e photon energy

e photon direction

generally, scattering is different for different incident
and scattered angles, i.e., anisotropic

this is generally is (very) not trivial to calculate
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but consider even more special case:

e isotropic scattering

e photon energy unchanged (‘“coherent scattering”)
good approximation for scattering by non-relativistic e

define scattering coefficient asc such that
intensity lost to scattering out of ray is

d]]/ — —CESC,I/ I]/ ds

isotropic scattering — asc,y same for all directions

Q. what is intensity scattered into the ray?

(32)
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Isotropic Coherent Scattering

intensity scattered out of ray I,(n/)
with solid angle d2/ is

dl,(7") = —ascy I, (7') ds
if scattering isotropic, the portion into n is

dI, (7)) = d—Q/ |d1,, ’)|

and so integrating over all possuble solid d2’' gives

Al (7) = O‘Z:T’” / I, dQ ds = oy J, ds

where J, is the angle-averaged intensity

(33)

(34)

(35)



and thus for isotropic coherent scattering

dl’;l im = —ascw [I,(R) — Ju] (36)
and so the source function is
Sy = Jy (37)
and the transfer equation can be written
dlgfﬁ = —I,(R) + Ju (38)

note that the mean flux J, = [ I,(7')dY /4n

depends on I, field in all directions

e scattering couples intensity in different directions

e transfer equation becomes integro-differential equation
generally very hard to solve!

N
w



