Astro 501: Radiative Processes
Lecture 9
Feb 4, 2013

Announcements:
e Problem Set 3 available, due Friday

Last time: scattering

isotropic coherent scattering Q. what's that? transfer eq?
random walk Q: what’'s that? rms progress after N steps?
scattering and absorption: absorption probability, albedo Q: what's
thatz

Today: scattering in a “fluid” approximation
— heat flux and the Rosseland mean
begin classical electromagnetic radiation



Radiative Diffusion: Rosseland Approximation

z

Imagine a plane-parallel medium:
n,p, T only depend on z
Think: interior of a star dz ds=dz / cos®

photon propagation depends only on angle 6
between path direction and z Q: why? why not on ¢ too?

change to variable y = cos#, and note that
path element ds = dz/cos@ = dz/u, SO

Maf,,éz, H) _ —(av+ )Ty — Sy) (1)

note: deep inside a real star like the Sun, /7, ~1 cm < Ry«
Q. implications?



ly ~1 cm <K Rs: rapid thermalization, damping of anisotropy

expect stellar interior to have intensity field that
e changes slowly compared to mean free path

e IS nearly isotropic

SO to zeroth order in £y, transfer equation

all/(za ,LL)

I, = Sl/ — ,Me* 92

(2)

gives
$9 ~ s59(1) (3)
this is angle-independent, so: J,SC)) — S,SO) and I,SO) — S,SO) = B,

Iterate to get first-order approximation

ay + Sy
what angular pattern does this intensity field have? why?



to first order, intensity pattern

I~ 89— 6.18% =B, ——L 5,8,

oy + Sy
l.e., a dominant isotropic component plus
small correction oc u = cos@: a dipole!
if T decreases with z, then 9,B, < 0, and so
intensity brighter downwards (looking into hotter region)

use this find net specific flux along z
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only the anisotropic piece of I,SO) of survives Q: why?
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net specific flux along z

47 41
F = 0.B, = — orB, 05T
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total integrated flux

OB
F(z) = /F,/(z) dv = ——8ZT/(QV +¢) 1t 8Ty dv
to make pretty, note that
AroT3
/ 8By dv = O / By dv = 0;B(T) = =2
7T

and define Rosseland mean absorption coefficient

1 o f(Oé]/ _I_ gy)_laTBy dv
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average effective mean free path, weighted by Planck derivative



Energy Flux in the Rosseland Approximation

using Rosseland mean, we have

160T30T
F(z) = — (13)

30éR 0z

Rosseland approximation to radiative flux
Q: what if T uniform? decreasing upwards? implications for

stars?

Note:
e whenever energy (heat) flux F — xVT
coefficient x is the heat conductivity
e in the presence of a heat flux, thermal energy density changes:

Ou=—V-F (14)

a continuity equation, i.e., local statement of energy conservation
for radiation, v = u(T), so &T ~ DV?2T: a diffusion equation!



in stars, energy must be transported from interior
where it is created by thermonuclear reactions
upwards until it is radiated to space

in regions when temperature gradient 0,7 not too large
radiative diffusion is the mechanism for energy transport
i.e., photons random walk their way out of the star

e typical solar photon is millions of years old

e unlike neutrinos which are minutes old

photon luminosity in interior radius r is

5160T30T
mr

L =4 2 F = -4
(r) o (r) 3ar Or

(15)

solar temperature drops with radius, 0,71 < O,
so L > 0: energy flows outwards!



Classical Electromagnetic Radiation




Electromagnetic Forces on Particles

Consider non-relativistic classical particle
with mass m, charge g and velocity v

under an electric field E and magnetic field B
the particle feels a force

—
—

F=qgE4+qixB (16)
C

sums Coulomb and Lorentz forces
units: cgs throughout; has nice property that [E] = [B]

power supplied by EM fields to charge

=5 F=q0 E=—
dt dt 2

o NO contribution from B: “magnetic fields do no work”

(17)

Q. what if smoothly distributed charge density and velocity field?
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Electromagnetic Forces on Continuous Media

consider a medium with charge density pq
and current density j = p,¥

by considering an “element” of charge dq = pq dV
we find force density, defined via dF = f dV:

]?: Pq E ‘l'% x B
and a power density supplied by the fields

aumech
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note: if medium is a collection of point sources gq;, 7;, U;

pa(7) = D_q; 6(F —7%)

and current density is

i(P) =" q G 6(F—7)
i

(20)

(21)



Cl

Maxwell’s Equations
Maxwell relates fields to charge and current distributions

in the absence of dielectric media (e = 1)
or permeable media (u = 1):

V- é = 4mpq Coulomb’s law
V-B = 0 NO Mmagnetic monopoles
VXxE = —%&gﬁ Faraday's law (22)
VxB = 4+15,E Ampere's law
take divergence of Ampeére
Opg+V-j=0 (23)

conservation of charge!

now can rewrite power exerted by fields on charges
in terms of fields only Q: how?
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Field Energy

Power density exerted by fields on charges

OUmech 2 3 1 S =\ &
——— =937 F=—(cVXB—-0F) - FE
ot J 47T(C t )

with clever repeated use of Maxwell,
can recast in this form:

Oufields | . g — _IUmech
ot ot

Q. physical significance of eq. (25)7?

(24)
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energy change per unit time

Oufields = Oumech
Y +V.-5= Y (26)
reminiscent of d;p; +V -7 =0
— an expression of local conservation of energy
where the mechanical energy acts as source/sink

identify electromagnetic field energy density

E?2 4+ B2
Ufields = — g (27)

i.e., up = E?/8m, and up = B?/8x

and Poynting vector is flux of EM energy

S=C"FExB (28)
41

> this is huge for us ASTR 501 folk! EM flux!
Q. when zero? nonzero? direction?
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Electromagnetic Waves

in vacuum (pg =0 = 7), and in Cartesian coordinates
Maxwell’'s equations imply (PS3):

— 1 —
VQE—C—QaEE = 0 (29)
— 1 —
V°B - S0fB = 0 (30)
C

both fields satisfy a wave equation

wave equation invites Fourier transform of fields:

L 1 . i
B(k,w) = 5 53 / 437 dt B(z,t) e "kT-wb) (31)
7T
inverse transformation'
@0 = w)z / BF dw Bk, w) ei(Fr—wt) (32)

note symmetry between transformation (but sign flip in phase!)
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original real-space field can be expressed as

E(Z,t) =

e 7T)2/d3l~c dw B(E,w) lkm—wt) (33)

expansion in sum of Fourier modes with
e wavevector k

magnitude k = 27/}, direction 7 = k/k
e angular frequency w = 27 v

apply wave equation to Fourier expansion:

L1 4
V2E - 075 = (277)2 . / B3F dw (K2 — w?) Bk, w) Fze)
= 0 (35)

for notrivial solutions with E # 0,
this requires w? = c2k2, or vacuum dispersion relation

w = ck (36)

i.e., wave solutions require constant phase velocity Vp = w/k =c



