
Astronomy 501 Spring 2013
Problem Set #10

Due in class: Friday April 19
Total points: 7+0.5

1. The Spectrum of a Classical Damped Oscillator. Here we will consider a simplified classical
model of the interaction of an atomic state with the electromagnetic field. We model
the electron in an atom as a one-dimensional, nonrelativistic, classical damped harmonic
oscillator. Here an electron with mass me oscillates with natural frequency ω0, while
experiencing a damping force with magnitude meΓẋ. The oscillator driven by an external
electric field of strength E(t) = E0 eiωt. The resulting equation of motion is therefore

ẍ = −Γẋ − ω2
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(a) [0.5 points] We can estimate the damping timescale by assuming that, in the absence
of the external field, the radiation from the charge leads to a decay in the oscillator’s
amplitude. Assuming that the energy loss per oscillation is small compared to the
oscillator’s energy, show that the energy loss rate is given by the inverse of the loss
timescale, and is
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Note that the numerical prefactor is somewhat arbitrary in our simplified treatment.

(b) [0.5 points] Consider the motion in the absence of the driving field. Search for
solutions of the form x(t) = x0 eiαt, where as usual it is understood that the physical
x coordinate is the real part of this quantity. Show that the resulting motion are
damped oscillations; find the oscillation frequency and the damping timescale.

(c) [1 point] Follow the discussion of a driven harmonic oscillator in pp. 100-102 of RL.
Fill in the steps to their derivation to show that case, the cross section is

σ(ω) = σT
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with σT the Thompson cross section. Note the the τ parameter in RL is related to
the width via Γ = ω2

0τ .

Then go on to cross section near resonance, where ω ≈ ω0. Again following RL, show
that this gives
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and finally show that ∫
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2. Hydrogen and lithium in the Sun.

(a) [0.5 points] The Hα line of hydrogen is from the 3p → 2s transition in atomic
hydrogen. Using the Bohr formula, calculate the energy EHα and wavelength λHα of
this transition.

Go online to the BASS2000 solar spectrum database.1 Find the Hα line in the
Sun, and estimate the full width at half maximum ∆λFWHM of the line. Find the
corresponding width in frequency space, ∆λFWHM = (∆νFWHM/νHα)λHα.

(b) [1 point] Assume that the Hα line profile φ(ν) at half-maximum and beyond is
Lorentzian. Using this, find an expression for the optical depth τν of the Hα line, in
terms of physical constants as well as the oscillator strength f3p→2s, natural width
Γ3p→2s, and the column density NH(3p) of neutral hydrogen in the 3p state.

Note that when the observed line strength is at half maximum, we have e−τν = 1/2.
Using this, and the values f3p→2s = 0.64 and Γ3p→2s = 5 × 108 s−1, calculate the
column density NH(3p) in the solar photosphere. Express your answer in cm−2.

Finally, assuming the solar photosphere is in equilibrium at temperature T⊙ = 5800
K, find the ratio n(1s)/n(3p) of atoms in the 1s and 3p states in the photosphere.
Use this to calculate the column density NH(1s) of hydrogen in the ground state.

(c) [1 point] Now consider the neutral lithium (Li I) doublet at 6707.8Å and 6707.9Å.
Find these lines in the solar spectrum, and explain why they are blended together.

Estimate the maximum depth ∆Fλ/Fλ(0) of the Li I absorption.

(d) [1 point] Using your result from part (c), and assuming thermal broadening, calcu-
late the column density of Li I in the sun. Express your answer in cm−2. Note that
the 6707.8Å line has an oscillator strength of 0.498, while for the 6707.9Å line this is
0.249.

(e) [0.5 points] Now use your results to find the solar ratio of Li I/H I. Comment on
the implications of your result.

(f) [0.5 bonus points] One can go on to find other abundances in the sun, e.g., that
of Si. But both Li and Si are also found in meteorites. Comparing the two reveals
that (Li/Si)⊙ ≪ (Li/Si)meteorites. In other words, we find that lithium is depleted in
the solar photosphere relative to the meteorites.

Suggest a reason for this discrepancy. No peeking! Hint: if the Sun is at fault, what
what might the lithium depletion tell us about solar physics?

3. [1 point] Rybicki and Lightman problem 10.5.

1
URL http://bass2000.obspm.fr/solar spect.php


