
Astronomy 501 Spring 2013
Problem Set #3

Due in class: Friday, Feb. 8
Total points: 7+1

1. Kirchhoff Revisited.

(a) [0.5 points] Consider a central spherical blackbody at temperature Tc, surrounded
by a concentric, non-scattering shell that is thermally emitting at Ts. For a slightline
that passes from the central object through the shell, solve for Iν as a function of
τν(s). Write your solution in the form of Iν = Bν(Tc)+∆ν , i.e., find ∆ν = Iν−Bν(Tc).

For Tc > Ts, find Iν and ∆ν in the limits τν ≪ 1, τν ≈ 1, and τν ≫ 1, and comment.
How will these change if Tc < Ts?

(b) [0.5 points] Now consider the case in which the absorption coefficient αν is nonzero
for a narrow region (“line”) centered at ν0 with width ∆ν ≪ ν0. Also let the width
have ∆ν ≪ kTs/h, kTc/h, i.e., the line feature is narrow compared to the frequency
scales over which the Planck spectra change. Using your solution for Iν , explain how
the spectrum Iν will look for Tc > Ts and for Tc < Ts.

In the optical and infrared, the Sun’s spectrum shows a continuum with absorption
lines, but in the UV and X-rays it shows a continuum with emission lines. Interpret
these physically on the basis of your results.

2. The Rosseland Mean and Electron Scattering in the Sun

(a) [0.5 points] For fully ionized hydrogen, free electron scattering has a frequency-
independent cross section σT = 8πe4/3m2

ec
4 = 0.665×10−24 cm2, Find the Rosseland

mean αR absorption coefficient for the case where electron scattering is the only
important extinction process. Also find the Rosseland mean opacity κR if medium
has mass density ρ.

(b) [0.5 points] Use the solar mass and radius to find the mean mass density of the Sun.
For a uniform density, fully-ionized Sun, find the mean free path, in cm. Then find
the optical depth for a photon at the center of the Sun. Finally, find the pathlength
traveled by a photon on its random walk out of the Sun, and the time it takes for the
photon to escape (expressed in a convenient unit, e.g., seconds or months or years).
Comment on the implications of your results.

3. Electromagnetic Radiation and Maxwell’s Equations. In class we looked at plane-wave
solutions to Maxwell’s equations in terms of their Fourier components. This problem is
to show that many of the general properties of electromagnetic plane waves can be found
without going to Fourier space. The results you will find will of course agree with those
we found for each Fourier mode, but make no reference to specific modes and thus apply
generally to any arbitrary wave train.

This problem will also give you a chance to brush up on your vector identities.
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(a) [0.5 points] Show that in vacuum, Maxwell’s equations in Cartesian coordinates can
be used to derive wave equations ∇2 ~E − (1/c2)∂2

t
~E = 0 and ∇2 ~B − (1/c2)∂2

t
~B = 0.

Hint: you might want to take the curl of one or more of Maxwell’s equations.

Now consider candidate solutions to these equations in the form ~E(~r, t) = ~E(n̂·~r−ct)
and ~B(~r, t) = ~B(n̂ · ~r − ct) That is, each Cartesian component such as Ei = Ei(χ) of
the fields is an arbitrary function of only one variable χ = n̂ · ~r − ct which combines
the position and time. This implies, for example, that ∂tEi = dEi/dχ ∂tχ = −cE′

i,
where E′

i ≡ dEi/dχ.

Show that ~E(n̂ ·~r− ct) and ~B(n̂ ·~r− ct) are solutions of the wave equation if n̂2 = 1,
that is, n̂ is a unit vector.

Show that solutions of this form represent plane waves propagating in the n̂ direction
with speed c. Hint: consider the behavior of ~E and ~B on surfaces of constant χ, first
at a fixed time, and then at different times.

(b) [1 points] Use Maxwell’s equations to show that ~E(n̂ · ~r − ct) and ~B(n̂ · ~r − ct) are
both transverse waves. Hint: after using Maxwell’s equations, you will probably want
to integrate the results with respect to χ, which is equivalent to an integration with
respect to time while holding position fixed. In doing so, you make take as a boundary
condition that neither ~E nor ~B have spatially constant (“DC”) components.

Also show that ~B(χ) = n̂× ~E(χ) (in cgs units), and use this to show that ~E, ~B, and
n̂ are everywhere mutually orthogonal. Finally, show that | ~E(χ)| = | ~B(χ)|.

(c) [0.5 points] Show that the Pointing flux is

~S(n̂ · ~r − ct) =
c

4π
|E(n̂ · ~r − ct)|2 (1)

and that the energy density is

u(n̂ · ~r − ct) =
1

4π
|E(n̂ · ~r − ct)|2 =

|~S|

c
(2)

Note that these are not the same as the time-averaged values 〈~S〉 and 〈u〉 quoted in
class. The time averaging is only trivial in the case of a monochromatic wave with a
single frequency.

4. [1 point] Rybicki & Lightman. Problem 2.2

5. Polarization1

(a) [1 point] Consider a plane electromagnetic wave with major (1) and minor (2) axis
electric fields given by

E1 = E0 cos βe−iωt (3)

and
E2 = −E0 sin βe−iωt−iπ/2. (4)

Here
e1 = ex cos χ + ey sin χ (5)

1Problems swiped from Charles Gammie.
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e2 = −ex sin χ + ey cos χ (6)

Show that for this wave

(I,Q,U, V ) = E2

0 (1, cos 2β cos 2χ, cos 2β sin 2χ, sin 2β). (7)

(b) [0.5 points] Consider a group of N linearly polarized electromagnetic wave, with
polarization angles 2πn/N , n = 0, . . . , N − 1. What is the polarization fraction?

(c) [0.5 points] Consider a beam with Stokes Q = 1, U = 0. What would the Stokes
parameters be if you rotated the beam by 90◦?

Then consider a plane wave with V = 1, Q = U = 0. In what sense does the beam
rotate around the wavevector (and which are you using: the electrical engineering,
or optics, convention)?

6. Bonus Problem: Light Echoes. In class we mentioned light echos as an interesting time-
dependent application of optically thin scattering. Here we will explore this further.

Consider an observer and a transient source, separated by a distance D. Assume the
environment around the source contains scattering sources, possibly inhomogeneous, but
with small optical depth so that at most one scattering event will occur. The unscattered
light will be seen as the transient outburst, and the scattered radiation will be the light
echo.

As seen in the diagram below, at a given time, a point on the echo will be measured at a
projected distance R from the source.

observer
z

r

source

D

R

(a) [0.5 bonus points] If the source is observed a time t after the transient outburst is
seen, show that the scattering sources lie on an ellipse, for which the source and the
observer are each one focus. Also show that the major axis of the ellipse has length
D + ct. Hint: the major axis is also the sum distances from the each focus to any
point on the ellipse.

To identify the location of the scattering source at projected distance R, we must find
its longitudinal distance z from the source (see diagram). Consider the “parabolic”
approximation in which D ≫ r, z,R. Show that in this approximation, we have

z =
R2

2ct
−

ct

2
(8)

which relates z to the observables R and t.

(b) [0.5 bonus points] For the case of SN 1987, the distance is D ≈ 50 kpc. In the
AAT light echo webpage in Lecture 8, there is a link to a series of six images.
Look at the image from t = 913 days after the outburst. Estimate R for the two
circles, and calculate z for each. What is the geometry of the scattering surfaces that
produced the rings? Are they located in front of or behind the supernova?


