
Astronomy 501 Spring 2013
Problem Set #7

Updated March 14 to fix typos and to add clarifications which are colored red.

Apologies for the errors!

Due in class: Friday, March 15
Total points: 7+1

1. Inverse Compton Scattering.

(a) [1 point] Consider a collision between a photon and an electron. In the lab frame,
the electron has relativistic energy γmec

2, and the photon has energy ǫ, and the
collision is head-on. Show that the lab-frame energy ǫ1 of the Compton scattered
photon is maximum when the scattering angle in the electron rest frame is θ = π.1

Also show that this maximum energy is

ǫ1,max =
γ2(1 + v)2ǫ

1 + 2γ(1 + v)ǫ/mec2
(1)

To do this you will need to boost into the electron rest frame and then back into the
lab frame.

Finally, show trivially that in the limit of ultra-relativistic electrons

ǫ1,max →
4γ2ǫ

1 + 4γǫ/mec2
(2)

and that if we are also in the Thompson limit γǫ ≪ mec
2, then the maximum

upscattered energy is ǫ1,max → 4γ2ǫ.

(b) [1 point] In class, we saw that the spectrum of inverse Compton emission for a
power-law distribution N(γ) = C γ−p of electron energies takes the form

j(ǫ1; ǫ) = σT

duph

dǫ
C

∫

∞

0
G(x) N(γ) dγ (3)

where x = ǫ1/(4γ
2ǫ) = ǫ1/ǫ1,max. The dimensionless spectral function G(x) was

given in class, and is peaked at xmax = 0.611 or ǫ1 = 4xmaxγ
2ǫ. Let’s simplify the

problem and assume that the spectral function is peaked as sharply as imaginable:
G(x) = δ(x − xmax), with xmax = 0.611. Find the emission function j(ǫ1; ǫ) in this
approximation.2 What is the dependence on ǫ1 and on ǫ, and how do these compare
with the results for the more careful solutions?

2. Inverse Compton Scattering of Solar Photons. In class we saw that the Fermi gamma-ray
space telescope has recently measured inverse Compton scattering of solar radiation by
cosmic-ray electrons. Here we will try to understand their basic result.

1Originally this had θ = 0 which is incorrect! Apologies!
2You may find it useful to recall the property of delta functions that

∫

f(x) δ[g(x)] dx = f(x0)/|g
′(x0)| where

x0 is a zero of g, i.e., g(x0) = 0, and g′ = dg/dx.
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(a) [0.5 points] Explain why inverse Compton scattering of solar photons is a partic-
ularly well-posed problem. That is, why should it be that the predictions we make
are rather precise? Hint: Think about the main ingredients or inputs needed to
calculate the inverse Compton emission, and then explain why these ingredients are
particularly well-understood for this case.

(b) [0.5 points] Assuming the Sun is a blackbody, find the peak energy (related to
the peak frequency) in the solar spectrum, and express your answer in eV. Fermi

measures solar photons in the range ∼ 100 MeV to ∼ 100 GeV. Show that cosmic-
ray electrons with Ee = 10 GeV will inverse-Compton scatter solar photons into the
heart of the Fermi energy range.

(c) [1 bonus point] Consider a cosmic-ray electron inside the solar system. Show that
the number density of solar photons scales as nγ ∝ L⊙/(ǫr2), with ǫ the mean solar
photon energy. Then show that a cosmic ray on a radial trajectory will encounter an
“optical depth” against Compton scattering is

τ ∼
σT L⊙

4πǫcR⊙

(4)

and compute the value of τ . Will most cosmic-ray electrons in the heliosphere undergo
Compton scattering?

(d) [1 point] Near the Earth, the flux of cosmic-ray electrons with energies of 10 GeV
and above is about Φe ≃ 10−4 electrons cm−2 s−1. Assuming these are all on radial
trajectories, show that the inverse Compton luminosity of the Sun is about LIC ∼

4πa2Φeτ . Using this, find the inverse Compton flux from the Sun.

Compare your result to the Fermi measurement, A. A. Abdo et al, 2011 ApJ 734,
116. Comment on the agreement.

3. The Sunyaev-Zeldovich Effect.3 For repeated inverse Compton scattering by nonrela-
tivistic electrons with a temperature Te which we will treat as fixed, the change in photon
occupation number f is given by the Kompaneets equation which describes how f changes
in frequency ν and time t. This equation in its original form is

∂

∂t
f =

neσT

mec

h

ν2

∂

∂ν

[

ν4

(

kTe

h

∂f

∂ν
+ f + f2

)]

(5)

This can be re-expressed in terms of a dimensionless variable x = hν/kTe as

∂

∂t
f = neσTc

kTe

mec2

1

x2

∂

∂x

[

x4

(

∂f

∂x
+ f + f2

)]

(6)

Recall that the occupation number is defined such that the number of photons per unit
volume with frequency in (ν, ν + dν) is dn = 8πν2 f/c3 dν.

(a) [1 point] Before we use the full Kompaneets equation, let’s first consider the incident
photons, prior to scattering. Let these have a blackbody spectrum with

f0 =
1

ehν/kTrad − 1
(7)

3Swiped from a problem by Wayne Hu.
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where Trad ≪ Te, and for the purposes of this problem we also treat the Trad as a
fixed constant.

Show that for this blackbody spectrum, we have

f0 + f2
0 = −

Trad

Te

∂f0

∂x
(8)

(b) [1 point] Turning to the Kompaneets equation, change variables from t to the
Compton-y parameter, where

dy = neσTc
k(Te − Trad)

mec2
dt (9)

where the electron density ne is taken as a fixed constant.

We are interested in the case where Compton scatterings make a small perturbation
to the incident blackbody photons. That is, wish to find the deviations ∆f = f − f0

which we assume are small. To do this, show that we can use the result from part
(a) to write the Kompaneets equation as

∂

∂y
f ≈

1

x2

∂

∂x

(

x4 ∂f

∂x

)

=
1

x2
ν

∂

∂xν

(

x4
ν

∂f

∂xν

)

(10)

where xν = hν/kTrad.

(c) [1 point] Assuming that the deviations ∆f = f − f0 are small, we can substitute
f0(xν) into the righthand side of eq. (10). The integration is then trivial; show that
it gives

∆f

f0

= −y xν
exν

exν − 1

(

4 − xν
exν + 1

exν − 1

)

(11)

For small perturbations, ∆f/f0 ≈ ∆Iν/Iν . What is ∆Iν/Iν as xν → 0? xν → ∞?
That is, find the leading nonzero term in each limit.

Numerically find the value of xν at which ∆Iν/Iν = 0. This is known as the SZ null.
For Trad = 2.725 K, find the null frequency in GHz.


