
Astro 501: Radiative Processes

Lecture 12

Feb 11, 2013

Announcements:

• Problem Set 4 due next Friday

• Happy Lunar New Year!

Last time: potentials, and the fields of moving charges

key idealized case: single point charge in arbitrary motion

Q: what does ~E depend on? ~B?

Q: ~E at constant velocity?

Today: radiation by accelerated charges

feel it in your bones!
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Electrodynamics of Moving Charges

after tedious algebra, we find:

~E(~r, t) = q

[

(n̂ − β̂)(1 − β2)

κ2R2

]

ret

+
q

c

[

n̂

κ3R
×

{

(n̂ − β̂) × ~̇β

}]

ret

(1)

where κ = 1 − n̂ · ~β

magnetic field is

~B(~r, t) =
[

n̂ × ~E(~r, t)
]

ret

the first term = “velocity field”
~E points to current position!

^

r(t)

n

position at
position at tret

ret

ret

t

R t(    )

v(t   )

→ legal? yes!

velocity constant, trajectory news always “available”
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Electric Acceleration Field

electric velocity field ∝ 1/R2

but other acceleration term ∝ v̇0

~E(~r, t)accel =
q

c

[

n̂

κ3R
×

{

(n̂ − β̂) × ˙̂β
}

]

ret
(2)

drops with distance ∝ 1/R: always larger at large R

for nonrelativistic motion, β0 = v0/c ≪ 1,

and so to first order

~E(~r, t)accel ≈

[

q

c2R
n̂ × (n̂ × ~a)

]

ret
(3)

a huge result!

Q: if acceleration is linear, what is polarization?

3



at large distances

~E(~r, t) → ~E(~r, t)accel ≈

[

q

c2R
n̂ × (n̂ × ~a)

]

ret
(4)

instantaneous ~E direction set by â and n̂

if acceleration is linear → â fixed

then ~E lies within (n̂, â) plane → 100% linearly polarized

using ~B → n̂ × ~Eaccel, the Poynting flux is

~S ≈
c

4π
E2

accel n̂ =
q2

4πc3R2

∣

∣

∣

∣

n̂ × (n̂ × ~̇β)

∣

∣

∣

∣

2
n̂ (5)

Q: noteworthy features?
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the Poynting flux is

~S ≈
q2

4πc3R2

∣

∣

∣

∣

n̂ × (n̂ × ~̇β)

∣

∣

∣

∣

2
(6)

S ∝ R−2
ret: flux obeys inverse square law!

Power per unit solid angle is

dP

dΩ
= R2n̂ · ~S ≈

c

4π
|R ~Eaccel|

2 =
q2

4πc3

∣

∣

∣

∣

n̂ × (n̂ × ~̇β)

∣

∣

∣

∣

2
(7)

independent of distance! Q: why did this have to be true?

Q: in which directions is dP/dΩ largest? smallest?

Q: radiation pattern?
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Larmor Formula

Nonrelativistic charges radiate when accelerated!

Power per unit solid angle is

dP

dΩ
=

q2

4πc3

∣

∣

∣

∣

n̂ × (n̂ × ~̇β)

∣

∣

∣

∣

2
(8)

define angle Θ between ~a and n̂ via n̂ · β̂ = cosΘ:

dP

dΩ
=

q2a2

4πc3
sin2 Θ (9)

a sin2 Θ pattern!

→ no radiation in direction of acceleration, maximum ⊥ ~a

integrate over all solid angles: total radiated power is

P =
q2a2

4πc3

∫

sin2 ΘdΩ =
2

3

q2

c3
a2 (10)

this will be our workhorse!

relates radiation to particle acceleration via P ∝ a2
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Why does Acceleration Cause Radiation?

to get a physical intuition for why acceleration → radiation

consider a particle rapidly decelerated from speed v to rest

over time δt

initial position

stopped at

"expected" position atv

δt
ct

consider a later time t ≫ δt

Q: field configuration near particle (r ≪ ct) ?

Q: field configuration near particle (r ≫ ct )?

Q: consequences?7



for fields track particle location expected for constant velocity

• nearby: r ≪ ct, fields radial around particle at rest

• far away: r ≫ ct: fields don’t “know” particle has stopped

→ “anticipate” location displaced by ct from original particle

radially oriented around this expected point

between the two regimes: r = ct ± cδt

field lines must have “kinks” which

• have tangential field component

• tangential component is anisotropic

and largest ⊥ ~v
width

ct c  t δ
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consider vertical fieldline ⊥ ~v:

kink radial width cδt

kink tangential width vt = (v/c)r

tangential/radial ratio is (v/δt)r/c2

but v/δt = a, average acceleration:

→ E⊥/Er = ar/c2

sin θ

tδc

vt

vt

θ
more generally, tangential width is

vt sinΘ = (v/c)r sinΘ

and so using Coulomb for Er:

E⊥ =
ar sinΘ

c2
Er =

qa

c2r
sinΘ (11)

and we recover Larmor:

dP

dΩ
= r2S =

cr2E2
⊥

4π
=

q2a2

4πc3
sin2 Θ (12)
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Note: existence of kink and thus of radiation

demanded by combination of

• Gauss’ law (field lines not created or destroyed in vacuum)

• finite propagation speed c

So far: field of a single point charge

Now: consider N particles, with qi, ~ri, ~ui = ~̇ri

Net ~E will be sum over all particles

Q: complications beyond “simple” bookkeeping?

Q: when will things simplify?

1
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Approximate Phase Coherence

fields for each charge depend on it’s retarded time

and these are different for each charge

→ leads to phase differences between particles

which we in general would have to track

When are phase differences not a problem?

When light-travel-time lags between particles

represent small phase differences

1
1



L

n

R0

Let system size be L, and timescale for variations τ

if τ ≫ L/c, phase differences will be small

or: characteristic frequency is ν ∼ 1/τ

so phase differences small if c/ν ≫ L, or λ ≫ L

note that typical particle speeds u ∼ L/τ , so

phase coherence condition → u ≪ c → nonrelativistic motion

1
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Dipole Approximation

so for non-relativistic systems we may ignore

• differences in time retardation, and

• the correction factor κ = 1 − n̂ · ~u/c → 1

and thus we have

~Erad =
∑

i

qi

c2
n̂ × (n̂ × ~ai)

Ri
(13)

but the system has Ri ≈ R0 ≫ L, and so

~Erad = n̂ ×





n̂

c2R0
×

∑

i

qi~ai



 =
n̂ × (n̂ × ~̈d)

c2R0
(14)

where the dipole moment is

~d =
∑

i

qi~ri (15)1
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for a non-relativistic dipole, we have

~Erad =
n̂ × (n̂ × ~̈d)

c2R0
(16)

this dipole approximation gives: power per unit solid angle

dP

dΩ
=

d̈2

4πc3
sin2 Θ (17)

and the total power radiated

dP

dΩ
=

2

3

d̈2

c3
(18)

1
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consider a dipole that maintains the same orientation ~d

E(t) = d̈(t)
sinΘ

c2R0
(19)

using Fourier transform of d(t), we have

d(t) =
∫

e−iωtd̃(ω) dω (20)

and so

Ẽ(ω) = −ω2d̃(ω)
sinΘ

c2R0
(21)

and thus the energy per solid angle and frequency is

dW

dΩdω
=

1

c3
ω4

∣

∣

∣d̃(ω)
∣

∣

∣

2
sin2 Θ (22)

and
dW

dω
=

8π

3c3
ω4

∣

∣

∣d̃(ω)
∣

∣

∣

2
(23)

• note the ω4 ∝ λ−4 dependence

• and d̃(ω): dipole frequencies control radiation frequencies
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