
Astro 501: Radiative Processes

Lecture 21

March 6, 2013

Announcements:

• Problem Set 6 due Friday 5pm

• Midterm Exam: grading elves hard at work

Last time: synchrotron spectrum

Q: spectrum for isotropic, monoenergetic electrons?

Q: spectrum for electrons with a power-law energy distribution?
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define critical frequency
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4π
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emission spectrum is synchrotron function F(ω/ωc)

sharply peaked near ωc ∝ ωgγ2
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full expression for power-law electron spectrum

of the form dN/dγ = Cγ−p

4πjtot(ω) =
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(3)

with Γ(x) the gamma function, with Γ(x+1) = x Γ(x)

Q: expected spectral index?

Q: do you expect the signal to be polarized? how?
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Polarization of Synchrotron Radiation

for an electron with a single pitch angle tanα = v⊥/v‖
→ circular motion around field line

→ radiation circularly polarized orthogonal to ~B

and elliptically polarized at arbitrary angles

but with distribution of pitch angles α,

elliptical portion cancels out → partial linear polarization

polarization strength varies with projected angle

of magnetic field on sky

more power orthogonal to projected field direction

→ net linear polarization, detailed formulae in RL

averaging over power-law distribution of electron energies

partial polarization is Π = (p+1)/(p+7/3)

and so Π = 3/4 for p = 3: highly polarized!

4



Transition from Cyclotron to Synchrotron

How and why are the emission spectra so different

for cyclotron (non-relativistic) vs synchrotron (relativistic)?

recall: in either case, electron motion is strictly periodic

with angular frequency

ωB =
qB sinα

mcγ
(4)

Q: nature of Fourier spectrum of received field?

Q: Fourier spectrum of emission for single pitch angle?

Q: spectrum in nonrelativistic case γ → 1?

Q: spectrum in mildly relativistic case?
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electron motion at fixed α strictly periodic with ωB
→ received field also strictly periodic

→ Fourier transform of field is nonzero only for

discrete series of frequencies mωB, m ∈ 1,2, . . .

and thus received radiation also is a Fourier series in ωB

cyclotron = nonrelativistic case: see field E = E0 cosωBt
Fourier series has one term: the fundamental frequency ωB

when mildly relativistic: Doppler effects add harmonic at 2ωB
and electric field shape modified to sharper, narrower peak

going to strongly relativistic: many harmonics excited

series “envelope” approaches F(ω/ωc)

electric field → very sharp, very narrow peak

with distribution of pitch angles:

“spaces” in series filled in → continuous spectrum
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Synchrotron Self-Absorption

Recall strategy so far:

• calculate emission coefficient jν

• remember Kirchoff’s law jν = αν Bν(T)

• solve for αν = jν/Bν(T)

We have already found

Q: why won’t this work here?

Q: what do we need to do? hint–how did we handle a two-level

system?
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Kirchoff’s law is only good for a thermal system

where emitter and absorber particles are nonrelativistic

and have Maxwell-Boltzmann energy/momentum distribution

here: electrons are relativistic and nonthermal

really: Kirchoff is example of detailed balance

→ in equilibrium, emission and absorption rates are the same →
this still applies in nonthermal case

recall from 2-level system, with E2 = E1 + hν

αν
2-level
=

hν

4π
[n(E1)B12 − n(E2)B21] φ(ν) (5)

Q: physical interpretation of n(E1)? B12? B21? φ(ν)?

Q: how should this be modified for synchrotron electrons?
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in 2-level system, emission at frequency ν

arises from unique energy level spacing E2 = E1 + hν

but cosmic ray electrons have continuous energy spectrum

→ emission at ν can arise from any two energies:

generalized to

αν =
hν

4π

∑

E1

∑

E2

[n(E1)B12 − n(E2)B21] φ21(ν) (6)

• with φ21(ν) → δ[ν − (E2 −E1)/h]

• first term: true absorption

• second term: stimulated emission

the goal: recast this in terms of what we know

synchrotron emission jν
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we have

αν =
hν

4π

∑

E1

∑

E2

[n(E1)B12 − n(E2)B21] φ21(ν) (7)

use Einstein relations, good for thermal and nonthermal

• spontaneous emission rate from state E2: A21 = 2hν3B21/c
2

• absorption and stimulated emission: B21 = B12

note that spontaneous emission is what we know!

we have found synchrotron power P(ν, E2) = 2πP(ω),

with E2 the radiating electron’s energy

P(ν, E2) = hν
∑

E2

A21 φ21(ν) (8)

now impose Einstein conditions and simplify

Q: role of φ21 and double sum
∑

E1

∑

E2
?
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profile function φ21(ν) → δ(E2 −E1 − hν)

fixes E1 for a given E2 and ν

and double sum → single sum

αν =
c2

8πhν3

∑

E2

[n(E2 − hν)− n(E2)] P(ν, E2) (9)

so far: schematic sum over electron energies

but really a continuum

recall: in each phase space cell h3

• number of electron states with momentum p is ge f(p)

• volume density of states in momentum space volume is d3p/h3

and thus

αν = ge
c2

8πhν3
1

h3

∫

[

f(p∗2)− f(p2)
]

P(ν, E2) d3p2 (10)

where p∗2 is the momentum corresponding to energy E2 − hν

Q: how is f related to electron spectum N(E)?
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number of electrons per unit volume
with energy in (E,E + dE) is N(E) dE

but this means that

N(E) dE =
4π ge

h3
p2 f(p) dp (11)

and for ultrarelativistic electrons, E = cp

thus we have

αν =
c2

8πhν3

∫

[

N(E − hν)

(E − hν)2
− N(E)

E2

]

E2 P(ν, E) dE (12)

and since hν ≪ E, expand to first order

αν = − c2

8πν2

∫

dE P(ν, E) E2 ∂E

[

N(E)

E2

]

(13)

and for a power-law N(E) ∝ E−p, we have

− E2∂E

[

N(E)

E2

]

= (p+2)
N(E)

E
(14)
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Synchrotron Absorption

finally then

αν = (p+2)
c2

8πν2

∫

dE P(ν, E)
N(E)

E
(15)

note frequency dependence:

• prefactor ν−2

• integral
∫

dE P(ν)N(E)/E ∼ dE P(ν)E−(p+1) ∼ ν−p/2

net scaling: αν ∝ ν−(p+4)/2

full result

αν =

√
3

8π
Γ

(

3p+2

12

)

Γ

(

3p+22

12

)

(

3q

2πm3c5

)p/2
(

q3C

m

)

(B sinα)(p+2)/2 ν−(p+4)/21
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Source Function

source function

Sν =
jν

αν
∝ ν−(p−1)/2

ν−(p+4)/2
= ν5/2 (16)

to see this, recall that

jν ∼
∫

dE N(E) P(ν) (17)

αν ∼ ν−2
∫

dE
N(E)

E
P(ν) (18)

thus source function has

Sν ∼ ν2Ē (19)

with typical electron energy Ē = mγ̄ for freq ν

but ν(E) ≈ νc(E) ∼ E2, so Ē ∝ ν1/2

and thus Sν ∼ ν5/2 independent of electron spectral index
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Synchrotron Radiation: the Big Picture

for relativistic electrons with power-law energy distribution

emission coefficient

jν ∝ ν−(p−1)/2 (20)

absorption coefficient

αν ∝ ν−(p+4)/2 (21)

source function (note nonthermal character!)

Sν ∝ ν5/2 (22)

Q: optical depth vs ν? implications?

Q: spectrum of a synchrotron emitter?

www: awesome example: pulsar wind nebulae

young pulsars are spinning down
much of rotational energy goes into relativistic wind

which collides with the supernova ejecta an emits synchrotron
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