Astro 501: Radiative Processes Lecture 22 March 8, 2013

Announcements:

- Problem Set 6 due today 5pm
- **Problem Set 7** out this weekend, due next Friday
- Midterm Exam: bad grading elves! bad!

Last time: synchrotron

Today: Compton scattering

Н

Erratum: Carbon-14

radioactive isotope ${}^{14}C$, $t_{1/2} = 5730$ yr

- used in radiocarbon dating
- has its origin in cosmic rays

how? cosmic-ray ions hit Earth's atmosphere collide with nuclei in air \rightarrow $^{14}\rm C$ is part of debris "rains out," incorporated into bio matter

in class I claimed: $p + {}^{14}N \rightarrow n + {}^{14}C$ in real time, sharp-eyed students saw this is *wrong! Q: why?*

in fact: "radiocarbon" ¹⁴C is produced several ways but the dominant channel is: $n + {}^{14}N \rightarrow p + {}^{14}C$ $\sim Q$: what questions does this raise?

www: neutron monitors

Astrophysical Context: Blazars

we met radio galaxies in the context of synchrotron radiation but there are many beasts in the active galaxy zoo

Blazars

ŝ

- seen as luminous nuclear nuclear region at center of giant elliptical galaxies
 www: optical blazar images (*R*-band)
- but *do not* show the elongated jets seen in radio galaxies
- flux shows rapid and large-amplitude time variability
- subclasses: BL Lacertae objects-weak radio emission optically violent variables (OVV)-strong radio emission
- demographics: many fewer blazars than other AGN e.g., Seyfert galaxies
 www: AGN demographics plot (INTEGRAL)
- blazar emission spans radio to TeV gamma rays

Q: what does this suggest about the nature of blazars?

Blazars: Staring Down the Jet

AGN "Unification Model" www: unification cartoon idea: all active galaxies have similar physical conditions

- a supermassive black hole (SMBH) possibly actively accreting matter
- a surrounding accretion disk, and dusty torus
- a relativistic jet, if SMBH is actively accreting

in unification picture: blazar = jet pointing directly at us!"looking down the barrel of the gun" emission from small region of jet "tip" \rightarrow highly variable

blazar spectra www: example over full EM range, two large features

- power-law rise from radio, peaks near optical
- falls to X-rays, then peak and power-law fall at gamma-ray

Q: what could be going on?

Blazar Spectra

Power-law rise from radio to \sim optical

- nonthermal
- similarity with radio galaxies suggests *synchrotron origin* from relativistic electrons in jet

Peak and power-law fall in gamma rays

- in non-flare ("quiescent") state, gamm-ray energy content similar to synchrotron
- suggests similar origin
 - \rightarrow perhaps a *reprocessing* of the synchrotron photos
- reprocessed how? by the relativistic electrons themselves!

Thus: we want to understand how relativistic electrons interact with photons Q: the name for which is...?

σ

Note: origin of blazar high-energy emission still debated!

Compton Scattering

7

Thomson Scattering

We already discussed the scattering of light by electrons in the context of *Thomson scattering*

Thomson highlights:

energies of incident photon ϵ and scattered photon ϵ_1 related by

$$\epsilon = \epsilon_1 \tag{1}$$

1 - >

differential cross section, with $\hat{k} \cdot \hat{k}_1 = \cos \theta$

$$\frac{d\sigma_{\rm T}}{d\Omega} = \frac{1}{2} r_0^2 \left(1 + \cos^2 \theta \right) \tag{2}$$

total cross section, with $r_0 = e^2/m_ec^2$

$$\sigma_{\mathsf{T}} = \frac{8\pi}{3} r_0^2 \tag{3}$$

00

Q: what assumptions went into this? When will they fail?

Enter the Quantum: Compton Scattering

Thomson scattering derived for classical EM wave $\nu = \nu_1$ classically carrying this to photon picture: $h\nu = h\nu_1$ \rightarrow coherent or elastic scattering

but really: photon quanta carry momentum and energy \rightarrow and electron will *recoil* and carry away energy \rightarrow expect scattered photon to have less energy, and to move in a different direction for photon incident on electron at rest _ $^{\epsilon}$ _

Compton: treat light as massless particle

$$\epsilon_1 = \frac{\epsilon}{1 + (\epsilon/m_e c^2)(1 - \cos \theta)}$$

scattered photon energy is lower, and direction different

so the wavelength shifts by

10

$$\lambda_1 - \lambda = \lambda_{\rm C} (1 - \cos \theta) \tag{5}$$

target electron at rest

εı

θ

(4)

where the electron Compton wavelength $\lambda_{\rm C} = h/m_e c = 0.02426$ Å

Q: what energy does a photon with λ_c have? Q: What region of the spectrum is this?

Q: when is the wavelength shift important? negligible?

Cross Section for Compton Scattering

Compton wavelength shift is $\Delta\lambda\sim\lambda_{\rm C}$

- small if $\lambda \gg \lambda_{\rm C}$ i.e., $h\nu \ll m_e c^2$ i.e., radio through soft X-rays
- large if $h\nu \gg m_e c^2$: hard X-rays, gamma rays

differential cross section: Klein-Nishina formula

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \frac{\epsilon_1^2}{\epsilon^2} \left(\frac{\epsilon}{\epsilon_1} + \frac{\epsilon_1}{\epsilon} - \sin^2 \theta \right)$$
(6)

- classical Thomson expression recovered when $\epsilon\sim\epsilon_1$
- main effect: *smaller* cross section at high energy
- total cross section, with $x = h\nu/m_ec^2$

$$\sigma \to \begin{cases} \sigma_{\mathsf{T}} (1 - 2x + \cdots) & x \ll 1\\ 3\sigma_{\mathsf{T}}/8 \ x^{-1}(\ln 2x + \cdots) & x \gg 1 \end{cases}$$
(7)

 $\begin{array}{c} 1\\ 1\end{array}$

recall: to understand blazars, we are interested in

• high-energy electrons interacting with ambient photons

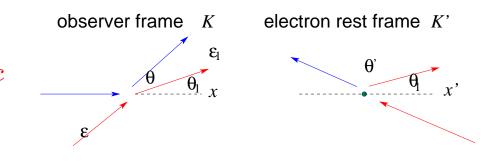
Q: why can't we just use the Compton scattering formulae?

Q: how can we use the formulae?

Inverse Compton Scattering

the usual Compton scattering expressions assume the electron is initially *at rest* and the *photon loses energy* in scattering \rightarrow "ordinary kinematics" but this is not the case we are interested in!

in a frame where the electron is relativistic


- then there can be a momentum and energy transfer and the photon gains energy
- "upscattered" to higher frequencies
- → "inverse kinematics" inverse Compton scattering

strategy: use Lorentz transformations *twice*

- 0. start in "lab frame" were e is relativistic
- $\ddot{\omega}$ 1. boost to *e* rest frame, find scattered photon energy/momentum
 - 2. boost back to lab frame to find scattered photon energy

Lab/observer frame *K*:

- initial electron *relativistic*
- Lorentz factor γ , speed $\beta = v/c$ electron rest frame K':
- ordinary kinematics

Doppler expression: find photon energies in rest frame

$$\epsilon' = \gamma \epsilon (1 - \beta \cos \theta)$$
(8)

$$\epsilon'_{1} = \gamma \epsilon_{1} (1 - \beta \cos \theta_{1})$$
(9)

Compton: with $\hat{k}' \cdot \hat{k}'_1 = \cos \Theta$, and assuming $\epsilon' \ll m_e c^2$

$$\epsilon_1' \approx \epsilon \left[1 - \frac{\epsilon'}{m_e c^2} (1 - \cos \Theta) \right]$$
 (10)

if initial lab-frame photon energy is ϵ

Q: initial photon energy in e rest frame, roughly?

- *Q: scattered photon energy in e rest frame, roughly?*
 - Q: scattered photon energy lab frame, roughly?

Inverse Compton: Order of Magnitude

if initial lab-frame photon energy is ϵ and lab-frame electron with $\gamma \gg 1$: in e rest frame: photon energy boosted \rightarrow initial energy $\epsilon' \sim \gamma \epsilon$

still in e rest frame: if $\epsilon' \ll m_e c^2 \rightarrow$ small photon energy change (Thomson) scattered energy $\epsilon'_1 \sim \epsilon' \sim \gamma \epsilon$

back to lab frame: scattered photon energy *boosted* to $\epsilon_1 \sim \gamma \epsilon'_1 \sim \gamma^2 \epsilon_1$

 $\vec{\sigma}$ Bottom line: upscattered photon energy $\frac{\epsilon_1 \sim \gamma^2 \epsilon}{Q: implications for blazars?}$

Inverse Compton Power for Single-Electron Scattering

Consider a relativistic electron (γ, β) incident on an isotropic distribution of ambient photons \rightarrow find power going into inverse Compton

Order of magnitude estimate:

- if typical ambient photon energy is ϵ then typical *upscattered energy* is $\epsilon_1 \sim \gamma^2 \epsilon$
- if ambient photon number density is n_{γ} then *scattering rate per electron* is $\Gamma \sim n_{\gamma}\sigma_{T}c \ Q$: why?

thus expect power = rate of energy into inverse Compton

$$\frac{dE_1}{dt} \sim \Gamma \ \epsilon_1 \sim \gamma^2 \epsilon n_\gamma \sigma_{\rm T} c \sim \gamma^2 \sigma_{\rm T} c u_\gamma \tag{11}$$

where $u_{\gamma} = \langle \epsilon \rangle n_{\gamma}$ is the ambient photon energy density *Q: looks familiar?*