Astro 501: Radiative Processes Lecture 25 March 15, 2013

Announcements:

- Problem Set 8 due today
- Problem Set 7 due after break

Last time: Sunyaev-Zeldovich theory *Q: implications of Planck form of CMB? Q: what is the SZ effect? integrated intensity? Q: effect at low frequencies?* CMB has Planck (blackbody) form $I_{\nu} = B_{\nu}(T_0)$ recall: a blackbody spectrum arises from

- a *thermal emitter* having source function $S_{\nu} = B_{\nu}$
- that is also *optically thick*

thus we conclude: sometime in the past

- cosmic matter and radiation were *in thermal equilibrium*
- and the Universe was opaque

N

but the fact that the CMB is a *background* to low-z objects \rightarrow late-time U. is *transparent* to CMB

thus the CMB implies that the Universe is *evolving* and in the past was much *denser* so that equilibrium could be established

SZ: Low Frequencies

at low frequencies $h\nu \ll kT_e$, we have

$$\frac{\Delta n(\nu)}{n_0(\nu)} = \frac{\Delta I_{\nu}}{I_{\nu}^0} \approx -2y \tag{1}$$

- *frequency-independent fractional decrease* in intensity
- proportional to Compton y

ŝ

physically reasonable? yes!

these wimpy photons are promoted to higher frequencies

Note: low-frequencies are Rayleigh-Jeans regime using antenna temperature $T_{\nu} = c^2 I_{\nu}/2hk\nu^2$, we have

$$\frac{\Delta T_{\nu}}{T_{\nu}} \approx -2y \tag{2}$$

constant fractional decrease in antenna temperature

Q: what about the high-frequency limit $h\nu \gg kT_e \sim m_e c^2 \beta^2$?

At high frequencies $h\nu \gg kT_e \sim \beta^2$, Compton shift dominates

roughly expect upscattered frequency

$$\nu \approx \left(1 + \frac{h\nu_0}{m_e c^2}\right)\nu_0 \tag{3}$$

so that $\Delta \nu / \nu_0 \sim h \nu_0 / m_e c^2$

same song, second verse: scattering kernel, again in simpleminded approximation

$$K(\nu,\nu_0) = (1-\tau) \,\,\delta(\nu_0 - \nu) + \tau \,\,\delta\left[\nu_0 - (1 - h\nu/m_e c^2)\nu\right]$$

thus we have

4

$$\frac{\Delta n(\nu)}{n(\nu)} = \frac{\Delta I_{\nu}}{I_{\nu}} = -\tau \frac{h\nu}{m_e c^2} \frac{1}{n(\nu)} \nu \partial_{\nu} n(\nu) \qquad (4)$$

$$= -y \frac{h\nu}{kT_{\text{rad}}} \left(2 - \frac{h\nu/kT_{\text{rad}}}{e^{h\nu/kT_{\text{rad}}}} \right) \approx y \left(\frac{h\nu}{kT_{\text{rad}}} \right)^2 (5)$$

Q: implications?

SZ Effect: High Frequencies

for $h\nu \gg kT_{\rm rad}$, a careful calculation finds

$$\frac{\Delta I_{\nu}}{I_{\nu}} \approx y \left(\frac{h\nu}{kT_{\text{rad}}}\right)^2 \tag{6}$$

now fractional shift is frequency dependent

To summarize, we have found the limiting SZ shifts for $x = h\nu/kT_{rad}$, we have

$$\frac{\Delta I_{\nu}}{I_{\nu}} \to \begin{cases} -2y & x \ll 1\\ yx & x \gg 1 \end{cases}$$
(7)

Q: implication?

С

SZ Effect: Null

We see that SZ decreases low-frequency intensity and increases high-frequency intensity

- \rightarrow there must be a transition that crosses zero!
- \rightarrow frequency ν_{null} must exist at which $\Delta I_{\nu}/I_{\nu} = 0$: SZ null

PS7 (modulo typos): Kompaneets SZ approximation

$$\frac{\Delta I_{\nu}}{I_{\nu}} = -y \ g(x) = -y \frac{xe^x}{e^x - 1} \left[4 - x \frac{e^x + 1}{e^x - 1} \right]$$
(8)

with $x = h\nu/kT_{rad}$; perturbation vanishes at $x_{null} = 3.83$

- Q: SZ spectral dependence? Q: how to exploit this observationally?
- www: SZ spectrum plotted Q: effect of cosmic redshifting on SZ: integrated intensity? spectrum?

SZ and Cosmic Redshifting

redshifting: a fundamental consequence the expanding universe cosmologist learn at their mother's knee that *lengths* stretch with to the *cosmic scale factor* a(t):

$$\vec{r}(t) = a(t) \ \vec{r}_0$$
 (9)

usual convention: today (time t_0) distance is \vec{r}_0 , so $a(t_0) = 1$

wavelengths are lengths – it's right there in the name! so wavelengths stretch as $\lambda(t) \propto a(t)$

• photon emitted with λ_{em} at t_{em} is observed at $t_{obs} = t_0$ with

$$\lambda_{\rm obs} = \frac{a(t_{\rm obs})}{a(t_{\rm em})} \lambda_{\rm em} = \frac{1}{a(t_{\rm em})} \lambda_{\rm em}$$
(10)

• thus the *redshift* is related to scale factor via

1

$$z \equiv \frac{\lambda_{\text{obs}}}{\lambda_{\text{em}}} - 1 = \frac{1}{a(t_{\text{em}})} - 1$$
(11)

Q: redshifting effect on ν ? *T*? *SZ* $\Delta I_{\nu}/I_{\nu}$? $\Delta I/I$?

Cosmic Redshifting

wavelength: $\lambda_{obs} = \lambda_{em}/a_{em} = (1+z)\lambda_{em}$

00

frequency: $\nu = c/\lambda$ and so $\nu_{obs} = a_{em} \ \nu_{em} = \nu_{em}/(1+z)$

temperature: Wein says $T/\nu_{max} = const$ so $T_{obs} \propto \nu_{max,obs} \propto a_{em}$ and so $T_{obs} = T_{em}/(1+z)$

But recall SZ fractional intensity change $\Delta I_{\nu}/I_{\nu}^{0} = -yg(x)$ \rightarrow only depends on dimensionless ratio x evaluated at emission

$$x = \frac{h\nu_{\rm em}}{kT_{\rm rad,em}} = \frac{h\nu_{\rm obs}/(1+z)}{kT_{\rm rad,obs}/(1+z)} = \frac{h\nu_{\rm obs}}{kT_{\rm rad,obs}}$$
(12)

SZ fractional specific intensity change is *redshift independent!* \rightarrow same goes for integrated intensity change $\Delta I/I = 4y$ *Q: is this reasonable?* www: SZ clusters at different redshift

this also means:

- shape of spectral distortion is redshift independent
- max, min, and null in $\Delta I_{\nu}/I_{\nu}$ always the same!
- robust signature of and test of (thermal) SZ effect!

SZ clusters usually resolved

- *Q*: what information is in a cluster's SZ pattern on sky?
- *Q*: what information is in total SZ flux across sky?

Q: SZ applications for cluster astrophysics?

Thermal SZ Effect as a Probe of Galaxy Cluster

in each line of sight

SZ measures Comptonization parameter in a cluster:

$$y = \sigma_{\mathsf{T}} \int \frac{n_e \ kT_e}{m_e c^2} ds = \frac{\sigma_{\mathsf{T}}}{m_e c^2} \int P_e \ ds \approx \frac{\sigma_{\mathsf{T}} \ kT_e}{m_e c^2} \int n_e \ ds \qquad (13)$$

direct measurement of *projected pressure* in column and if T_e known, a measure of electron column density

SZ flux measures

$$\int \cos\theta \ y \ d\Omega \approx \int y \ d\Omega = \frac{\int y \ dA}{D_{\mathsf{A}}^2} \tag{14}$$

where $D_A(z)$ is the (angular diameter) distance

$$\int y \ dA \approx \frac{\sigma_{\rm T} \ kT_e}{m_e c^2} \int n_e \ ds \ dA \propto M_{\rm gas}$$
(15)

10

 \rightarrow SZ flux gives *intracluster cluster gas mass!* Q: cosmo apps?

SZ Effect: Cosmological Applications

- SZ identifies all clusters without redshift bias! \rightarrow SZ can be used to discover high-z clusters
- SZ + X-ray gives cluster size, gas mass, T_e if cluster physics well-understood (Ricker, Vijayaraghavan) \rightarrow cluster mass
- cluster number density ("abundance") and mass vs z
 i.e., cluster mass function a sensitive probe of cosmology

today: clusters are the *largest bound objects*; in early U: rare number and mass vs time sensitive to *cosmic acceleration* that competes with *structure growth via gravitational instability* \Rightarrow clusters probe this competition

11

Q: so how to find clusters, measure redshifts?

note that SZ redshift independence also means SZ does not give cluster redshift

Dark Energy Survey key project: optical images, redshifts of clusters compare with SZ survey by South Pole Telescope

www: SPT survey image

SZ Effect: More Cosmological Applications

even for clusters not clearly imaged in SZ SZ effect from all clusters still imprinted on CMB affects $\Delta T_{\rm cmb}$ perturbation pattern on sky

typical angular size of cluster SZ: for large cluster $\theta_{cluster} \sim R_{cluster}/d_{\rm H} \sim 3 \text{ Mpc}/4 \text{ Gpc} \sim 3 \text{ arcmin}$ i.e., SZ affects small angular scales in C_{ℓ} multipole space this corresponds to $\ell \sim 200/\theta_{deg} \sim 4000$

SZ statistical imprint on CMB anisotropies: exquisitely sensitive measure of *cosmic structure* for experts: angular power spectrum $C_{\ell}^{SZ} \propto \sigma_8^7$!

13

To date: SZ contribution to power spectrum not seen! Planck?

Kinetic SZ Effect and Cosmology

Thus far: implicitly assumed that cluster is *at rest* relative to CMB frame ("fundamental observers")

but if cluster moving along line of sight with velocity v_{los} bulk motion adds *uniform Doppler shift* to usual thermal SZ effect

 \rightarrow kinematic or kinetic SZ effect ("kSZ")

at lowe frequencies (Rayleigh-Jeans), kSZ has

$$\frac{\Delta I_{\nu}}{I_{\nu}} \approx -\tau \, \frac{v_{\text{los}}}{c} \tag{16}$$

what causes cluster motion = bulk flows? \rightarrow large-scale density perturbations

14

Q: but how do we tell between kSZ and thermal SZ?

Other SZ Applications

SZ is sensitive to *any* population of high-energy electrons

should be a SZ contribution from relativistic electrons in intracluster medium, arising from

- cosmic-rays escaped from galaxies, or from
- "structure formation cosmic rays" accelerated by cosmological shocks

nonthermal SZ

also recall that AGN jets lead to electron acceleration in principle can measure jet electrons in SZ

15

Have a good break!