
Astro 501: Radiative Processes

Lecture 29

April 3, 2013

Announcements:

• Problem Set 9 due 5pm next Monday

• Special guest lecturer: Prof. Dr. Charles F. Gammie

theoretical astrophysicist extraordinarie

expert in black holes, relativistic magnetohyrodynamics

accretion disks, and spectroscopic notation

• Physics Colloquium today:

Dan Hooper, Fermilab and U. Chicago

“Searching for Dark Matter in the Discovery Age”

Last time: atomic structure

Today: thermodynamics of atomic states
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Thermal Population of Atomic States

if atoms can interact, e not necessarily all in ground state

in general: a big job to calculate population of atomic states

but as usual: much simplification if thermodynamic equilibrium

Boltzmann: consider a single atomic state having energy Ei

for an ensemble of n atoms in thermodynamic equilibrium at T

the population = numbers ni of atoms in state i is

ni =
n

Z
e−Ei/kT (1)

interpret pi = e−Ei/kT/Z as the probability that an atom

is found in state i

Q: how do we find the normalization constant Z?
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each state has population ni, and if we sum all states

must recover total population n, so

n =
∑

states i

ni
n

Z

∑

states i

e−Ei/kT (2)

and thus we find the partition function

Z =
∑

states i

e−Ei/kT (3)

and thus pi = e−Ei/kT/
∑

j e−Ej/kT and clearly
∑

i pi = 1
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in many cases, more than one atomic state has energy Ei

let the number of states with Ei be gi

i.e., gi counts the “degeneracy” at level Ei

then the number of states with energy Ei is

n(Ei) = gi
n

Z
e−Ei/kT (4)

and the partition function can be written

Z =
∑

levels Ei

gie
−Ei/kT (5)

consider two states of energies E1, E2 > E1

for an ensemble of atoms in thermodynamic equilibrium at T

the populations = numbers n1, n2 of atoms the states

is given by
n2

n1
=

g2
g1

e−(E2−E1)/kT (6)
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note that for a given atomic system and temperature T

the partition function Z =
∑

states gie
−Ei/kT is a number

Q: what does this number represent physically? hint: roughly at

what levels does the sum effectively terminate?

Q: what is Z as kT → 0?
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roughly:

the partition function counts all states with Ei
<∼ kT

so Z ≈ number of states with Ei
<∼ kT

→ i.e., “partitions” atomic states into those “accessible” at T

as kT → 0: all states suppressed except ground state E1 = 0

so Z → g1, the degeneracy of the ground state

consider the partition function for atomic hydrogen

where En = −B/n2, with B = |E1| = e4me/2h̄2, the binding

energy

recalling that the shell each n has degeneracy gn = 2n2:

Z(H) = 2
∞
∑

n=1

n2eβB/n2
(7)

where β = 1/kT

Q: roughly what is the value of Z(H)? why? implications?
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neutral hydrogen partition function, with β = 1/kT

Z(H) = 2
∞
∑

n=1

n2eβB/n2
(8)

eβB/n2 → 1 for large n, so

Z(H) ≈ 2
∞
∑

large n

n2 ∼ n3
max → ∞ (9)

infinite partition function!

but what does this mean?!
strictly: probability to be in state i is pi ∝ 1/Z = 0?!
that is: high probability to be at high n

physically: if H atoms in equilibrium with a thermal bath at T
and all states n are accessible
then eventually all atoms fluctuate to high n → ionized!

this can’t be right! atoms do exist! Q: what’s the fix?
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Partition Function Cutoff

We implicitly assumed that we could carry our sum

out to arbitrarily large n

While it is true that atomic H has such states

recall rn = n2a0: high-n states are physically large!

physically, real e orbits in an H atom cannot extend

beyond the nearest-neighbor H atom

which typically lies at distance dmax such that nHd3 ∼ 1

or dmax ∼ n
−1/3
H

setting dmax = n2
maxa0, we estimate

nmax ∼
√

dmaxa0 ∼
(

a3
0nH

)−1/6 ∼ 104

(

nh

1 atom/cm3

)−1/6

(10)

but: a very Wild West estimate! real physics is more complex...
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Thermodynamics of Ionization

consider a hydrogen gas in thermodynamic equilibrium at T

ionization and recombination both occur

H + γ ↔ p + e (11)

and the number densities ne, np, and nH adjust themselves

until the recombination and ionization rates are equal

this equilibrium determines a relationship among the densities

which we want to find

Method I (R&L):

starting point–the ratio of free electrons at speed v

to neutral hydrogen atoms in the ground state

δne(v)

n1
=

δge(v)

g0
e−[Ee(v)−E1]/kT =

δge(v)

g0
e−(B+mev2/2)/kT (12)

where B = −E1 is hydrogen binding energy
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Method II:

recall that the number of states for a particle

is related to its distribution function f via

dN =
g

h3
f d3x d3p (13)

where f counts states in phase space

i.e., translational degrees of freedom

and where g counts internal degrees of freedom

e.g., for a free electron, ge = 2se + 1 = 2

a particle species in thermal (in fact, kinetic) equilibrium

at T has

f =
1

e(E−µ)/kT ± 1
(14)

where ± ↔ fermion/boson

and E(p) =
√

(cp)2 + (mc2)2
nonrel
= mc2 + p2/2m

and where µ is the chemical potential (more on this soon)
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distribution function, ± ↔ fermion/boson

f =
1

e(E−µ)/kT ± 1
(15)

for nonrelativistic, nondegnerate gasses of interest, f ≪ 1

→ e(E−µ)/kT ≫ 1, and thus we get

Maxwell-Boltzmann, same for fermions and bosons

f ≈ fMB = e(mc2−µ)/kTe−p2/2mkT (16)

and thus number density is

n =
g

h3

∫

d3p f = g

(

2πmkT

h2

)3/2

e(mc2−µ)/kT (17)

thus n(T, µ): density depends not only on T

but also on chemical potential(?)1
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nonrelativistic particle density

n(T , µ) =
g

h3

∫

d3p f = g

(

2πmkT

h2

)3/2

e(mc2−µ)/kT (18)

if chemists invented µ, isn’t it boring? Fair question, but no!

chemical potential µ: bad name, important quantity

consider a particle species with µ = 0

Q: effect on n if T changes?

Q: what would it be like if air in this room obeyed this rule?

Q: so what does it mean physically if µ = 0?

Q: so what does it mean physically if µ 6= 0?
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Chemical Potential

if µ = 0:

density obeys n(T) = g nq(T) e−mc2/kT

with the quantum concentration nq = (2πmkT/h3)3/2

→ density is a fixed, universal function of T

→ all µ = 0 gasses have same density at same T !?

furthermore:

• since nonrel, kT ≪ mc2 → n small!

• but n is an increasing function of T

→ so in fixed volume, raising T adds new particles!

lesson: particles with µ = 0 are not conserved!

in fact, we already saw a (relativistic) example: photons!

recall Planck dist func f = 1/(eE/kT − 1): boson with µ = 0
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we are usually interested in species that are conserved

e.g., protons, neutrons conserved due to baryon number

electrons conserved due to charge and lepton number

in that case: non-relativistic equilibrium density

determined not by temperature, but by conservation law

ncons = g nq e−(mc2−µ)/kT (19)

this sets value of µ

Why is all of this useful?!

because in a reaction a + b ↔ c + d

the chemical potentials of each species

are related by

µa + µb = µc + µd (20)

Q: so what about the case p + e ↔ H + γ?
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for p + e ↔ H + γ, we have

µp + µe = µH (21)

because µγ = 0

using this and ni = ginQe−(mic
2−µi)/kT , we have

the Saha equation

nenp

nH
=

gegp

gH

(

2π
memp

mH

kT

h2

)3/2

e−BH/kT (22)

where hydrogen binding energy

BH = (me + mp − mH)c2 = 13.6 eV

Q: behavior at high T? low T? does this make sense?1
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The Saha Equation

define ionization fraction

xe =
ne

ntot
(23)

with total electron number density ntot = ne + nH

using ne = np (charge neutrality):

x2
e

1 − xe
≈ 2(2πmekT/h2)3/2

ntot
e−BH/kT =

nQ,e

ntot
e−BH/kT (24)

for kT ≫ BH, xe → 1: (nearly) fully ionized

for kT ≪ BH, xe ≪ 1: (nearly) fully neutral

but note that, e.g., temperature at which xe = 1/2

also depends on particle density ntot

1
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Awesome Saha Example: Cosmic Recombination

the early universe: hot!

kT ≫ BH → totally ionized, xe → 1

present-day universe: on average, cold!

T = 2.725 K → if no stars, U would be neutral, xe → 0

thus there was a transition: (re)combination

our mission: estimate Trec = when cosmic xe = 1/2

Q: näıve, zeroth order estimate?

Q: how to improve?
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näıvely, expect recombination when kTrec ∼ BH
with BH = 13.6 eV, this gives

Trec,naive = BH/k ∼ 120,000 K

but we can do better using Saha

exponential dependence on BH, but also

dependence on ntot

big-bang nucleosynthesis teaches∗ us that

the cosmic baryon-to-photon ratio is

η ≡ nb

nγ
= 6 × 10−10 (25)

most baryons are hydrogen, so ntot ∼ nb
and thus there are many photons for each p and e

Q: anticipated effect on Trec? higher or lower than Trec,naive?

∗How? find out the next time Nuclear and Particle Astrophysics is taught!
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many photons per p and e → very easy to ionize H

• when kT < BH, there are still many photons

in Wien tail with hν > BH
• thus expect Trec < Trec,naive

in detail:

recall that nγ ∼ (kT/hc)3, so

ntot ∼ ηnγ ∼ η(kT/hc)3 (26)

and so Saha becomes

x2
e

1 − xe
∼ 1

η

(

mec2

kT

)3/2

e−BH/kT (27)

note: 1/η ≫ 1 and mec2/kT ≫ 1

so when xe = 1/2 we have (PS 8)

Trec ≃ Trec,naive/40 ∼ 3000 K

kTrec ≃ 0.3 eV ≪ BH
and thus 1 + zrec = Trec/T0 ∼ 1000
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Saha Generalized

can generalize Saha to get ionization equilibrium

for any species having a+ + e ↔ a0 + γ

n+ne

n0
=

g+ge

g0

(

2π
mem+

m0

kT

h2

)3/2

e−B/kT (28)

with B the binding energy
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