Astro 501: Radiative Processes Lecture 29 April 3, 2013

Announcements:

- Problem Set 9 due 5pm next Monday
- Special guest lecturer: *Prof. Dr. Charles F. Gammie* theoretical astrophysicist extraordinarie expert in black holes, relativistic magnetohyrodynamics accretion disks, and spectroscopic notation
- Physics Colloquium today: Dan Hooper, Fermilab and U. Chicago "Searching for Dark Matter in the Discovery Age"

Last time: atomic structure

Н

Today: thermodynamics of atomic states

Thermal Population of Atomic States

if atoms can interact, e not necessarily all in ground state in general: a big job to calculate population of atomic states

but as usual: much simplification if *thermodynamic equilibrium*

Boltzmann: consider a single atomic state having energy E_i for an ensemble of n atoms in thermodynamic equilibrium at Tthe population = numbers n_i of atoms in state i is

$$n_i = \frac{n}{Z} e^{-E_i/kT} \tag{1}$$

interpret $p_i = e^{-E_i/kT}/Z$ as the probability that an atom is found in state i

Q: how do we find the normalization constant Z?

N)

each state has population n_i , and if we sum all states must recover total population n_i , so

$$n = \sum_{\text{states } i} n_i \frac{n}{Z} \sum_{\text{states } i} e^{-E_i/kT}$$
(2)

and thus we find the partition function

$$Z = \sum_{\text{states } i} e^{-E_i/kT}$$
(3)

and thus $p_i = e^{-E_i/kT} / \sum_j e^{-E_j/kT}$ and clearly $\sum_i p_i = 1$

in many cases, more than one atomic state has energy E_i let the number of states with E_i be g_i

i.e., g_i counts the "degeneracy" at level E_i then the number of states with energy E_i is

$$n(E_i) = g_i \frac{n}{Z} e^{-E_i/kT}$$
(4)

and the partition function can be written

$$Z = \sum_{\text{levels } E_i} g_i e^{-E_i/kT}$$
(5)

consider two states of energies E_1 , $E_2 > E_1$ for an ensemble of atoms in thermodynamic equilibrium at Tthe populations = numbers n_1 , n_2 of atoms the states is given by

4

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} e^{-(E_2 - E_1)/kT} \tag{6}$$

note that for a given atomic system and temperature Tthe partition function $Z = \sum_{\text{states}} g_i e^{-E_i/kT}$ is a number

Q: what does this number represent physically? hint: roughly at what levels does the sum effectively terminate?

Q: what is Z as $kT \rightarrow 0$?

roughly: the partition function counts all states with $E_i \lesssim kT$ so $Z \approx$ number of states with $E_i \lesssim kT$ \rightarrow i.e., "partitions" atomic states into those "accessible" at T

as $kT \rightarrow 0$: all states suppressed except ground state $E_1 = 0$ so $Z \rightarrow g_1$, the degeneracy of the ground state

consider the partition function for *atomic hydrogen* where $E_n = -B/n^2$, with $B = |E_1| = e^4 m_e/2\hbar^2$, the binding energy

recalling that the shell each n has degeneracy $g_n = 2n^2$:

$$Z(H) = 2\sum_{n=1}^{\infty} n^2 e^{\beta B/n^2}$$
(7)

where $\beta = 1/kT$

σ

Q: roughly what is the value of Z(H)? why? implications?

neutral hydrogen partition function, with $\beta = 1/kT$

$$Z(H) = 2\sum_{n=1}^{\infty} n^2 e^{\beta B/n^2}$$
(8)

 $e^{\beta B/n^2} \rightarrow 1$ for large n, so

$$Z(\mathsf{H}) \approx 2 \sum_{\text{large } n}^{\infty} n^2 \sim n_{\max}^3 \to \infty$$
(9)

infinite partition function!

but what does this mean?! strictly: probability to be in state i is $p_i \propto 1/Z = 0$?! that is: high probability to be at high n

physically: if H atoms in equilibrium with a thermal bath at T and all states n are accessible then eventually all atoms fluctuate to high $n \rightarrow ionized!$

this can't be right! atoms do exist! Q: what's the fix?

Partition Function Cutoff

We implicitly assumed that we could carry our sum out to *arbitrarily large* n

While it is true that atomic H has such states recall $r_n = n^2 a_0$: high-*n* states are physically large!

physically, real e orbits in an H atom cannot extend beyond the nearest-neighbor H atom which typically lies at distance $d_{\rm max}$ such that $n_{\rm H}d^3\sim 1$ or $d_{\rm max}\sim n_{\rm H}^{-1/3}$

setting $d_{\max} = n_{\max}^2 a_0$, we estimate

$$_{\infty} n_{\max} \sim \sqrt{d_{\max}} a_0 \sim \left(a_0^3 n_{\rm H}\right)^{-1/6} \sim 10^4 \left(\frac{n_{\rm h}}{1 \text{ atom/cm}^3}\right)^{-1/6}$$
 (10)

but: a very Wild West estimate! real physics is more complex...

Thermodynamics of Ionization

consider a hydrogen gas in thermodynamic equilibrium at ${\cal T}$ ionization and recombination both occur

$$\mathsf{H} + \gamma \leftrightarrow p + e \tag{11}$$

and the number densities n_e , n_p , and n_H adjust themselves until the recombination and ionization rates are equal

this equilibrium determines a relationship among the densities which we want to find

Method I (R&L): starting point—the ratio of free electrons at speed vto neutral hydrogen atoms in the ground state

Q

$$\frac{\delta n_e(v)}{n_1} = \frac{\delta g_e(v)}{g_0} e^{-[E_e(v) - E_1]/kT} = \frac{\delta g_e(v)}{g_0} e^{-(B + m_e v^2/2)/kT} \quad (12)$$

where $B = -E_1$ is hydrogen binding energy

Method II: recall that the number of states for a particle is related to its *distribution function* f via

$$dN = \frac{g}{h^3} f \ d^3x \ d^3p \tag{13}$$

where f counts states in phase space

i.e., *translational* degrees of freedom and where g counts *internal* degrees of freedom e.g., for a free electron, $g_e = 2s_e + 1 = 2$

a particle species in thermal (in fact, kinetic) equilibrium at T has

$$f = \frac{1}{e^{(E-\mu)/kT} \pm 1}$$
 (14)

where $\pm \leftrightarrow$ fermion/boson and $E(p) = \sqrt{(cp)^2 + (mc^2)^2} \stackrel{\text{nonrel}}{=} mc^2 + p^2/2m$ and where μ is the chemical potential (more on this soon) distribution function, $\pm \leftrightarrow$ fermion/boson

$$f = \frac{1}{e^{(E-\mu)/kT} \pm 1}$$
 (15)

for nonrelativistic, nondegnerate gasses of interest, $f \ll 1$ $\rightarrow e^{(E-\mu)/kT} \gg 1$, and thus we get Maxwell-Boltzmann, same for fermions and bosons

$$f \approx f_{\rm MB} = e^{(mc^2 - \mu)/kT} e^{-p^2/2mkT}$$
 (16)

and thus *number density* is

$$n = \frac{g}{h^3} \int d^3p \ f = g \left(\frac{2\pi mkT}{h^2}\right)^{3/2} e^{(mc^2 - \mu)/kT}$$
(17)

thus $n(T,\mu)$: density depends not only on T but also on chemical potential(?)

11

nonrelativistic particle density

12

$$n(T,\mu) = \frac{g}{h^3} \int d^3p \ f = g \left(\frac{2\pi m kT}{h^2}\right)^{3/2} e^{(mc^2 - \mu)/kT}$$
(18)

if chemists invented μ , isn't it boring? Fair question, but no!

chemical potential μ : bad name, important quantity

consider a particle species with $\mu = 0$ Q: effect on n if T changes? Q: what would it be like if air in this room obeyed this rule?

Q: so what does it mean physically if $\mu = 0$? *Q:* so what does it mean physically if $\mu \neq 0$?

Chemical Potential

if $\mu = 0$:

density obeys $n(T) = g n_q(T) e^{-mc^2/kT}$ with the *quantum concentration* $n_q = (2\pi m kT/h^3)^{3/2}$ \rightarrow density is a fixed, universal function of T \rightarrow all $\mu = 0$ gasses have *same density at same T*!?

furthermore:

- since nonrel, $kT \ll mc^2 \rightarrow n$ small!
- \bullet but n is an increasing function of T
 - \rightarrow so in fixed volume, raising T adds new particles!

lesson: particles with $\mu = 0$ are *not conserved!*

in fact, we already saw a (relativistic) example: photons! recall Planck dist func $f = 1/(e^{E/kT} - 1)$: boson with $\mu = 0$ we are usually interested in species that *are* conserved e.g., protons, neutrons conserved due to baryon number electrons conserved due to charge and lepton number

in that case: non-relativistic equilibrium density determined not by temperature, but by conservation law

 $\mu_a + \mu_b = \mu_c + \mu_d$

$$n_{\rm cons} = g \, n_{\rm q} \, e^{-(mc^2 - \mu)/kT}$$
 (19)

this sets value of μ

14

Why is all of this useful?! because in a reaction $a + b \leftrightarrow c + d$ the chemical potentials of each species are related by

Q: so what about the case $p + e \leftrightarrow H + \gamma$?

for $p + e \leftrightarrow H + \gamma$, we have

$$\mu_p + \mu_e = \mu_{\mathsf{H}} \tag{21}$$

because $\mu_{\gamma} = 0$

15

using this and $n_i = g_i n_{\rm Q} e^{-(m_i c^2 - \mu_i)/kT}$, we have the Saha equation

$$\frac{n_e n_p}{n_{\rm H}} = \frac{g_e g_p}{g_{\rm H}} \left(2\pi \frac{m_e m_p kT}{m_{\rm H}} \frac{kT}{h^2} \right)^{3/2} e^{-B_{\rm H}/kT}$$
(22)

where hydrogen binding energy $B_{\rm H} = (m_e + m_p - m_{\rm H})c^2 = 13.6 \text{ eV}$

Q: behavior at high T? low T? does this make sense?

The Saha Equation

define ionization fraction

$$x_e = \frac{n_e}{n_{\text{tot}}} \tag{23}$$

with total electron number density $n_{tot} = n_e + n_H$ using $n_e = n_p$ (charge neutrality):

$$\frac{x_e^2}{1-x_e} \approx \frac{2(2\pi m_e kT/h^2)^{3/2}}{n_{\text{tot}}} e^{-B_{\text{H}}/kT} = \frac{n_{\text{Q},e}}{n_{\text{tot}}} e^{-B_{\text{H}}/kT}$$
(24)
for $kT \gg B_{\text{H}}, x_e \rightarrow 1$: (nearly) fully ionized
for $kT \ll B_{\text{H}}, x_e \ll 1$: (nearly) fully neutral

but note that, e.g., temperature at which $x_e = 1/2$ 5 also depends on particle density n_{tot}

Awesome Saha Example: Cosmic Recombination

the early universe: *hot!* $kT \gg B_{\rm H} \rightarrow$ totally ionized, $x_e \rightarrow 1$

present-day universe: on average, *cold!* $T = 2.725 \text{ K} \rightarrow \text{ if no stars, U would be neutral, } x_e \rightarrow 0$

thus there was a transition: (re)combination our mission: estimate T_{rec} = when cosmic $x_e = 1/2$

Q: naïve, zeroth order estimate? Q: how to improve?

17

naïvely, expect recombination when $kT_{\rm rec} \sim B_{\rm H}$ with $B_{\rm H} = 13.6$ eV, this gives $T_{\rm rec,naive} = B_{\rm H}/k \sim 120,000$ K

but we can do better using Saha exponential dependence on $B_{\rm H}$, but also dependence on $n_{\rm tot}$

big-bang nucleosynthesis teaches* us that the cosmic baryon-to-photon ratio is

$$\eta \equiv \frac{n_{\rm b}}{n_{\gamma}} = 6 \times 10^{-10} \tag{25}$$

most baryons are hydrogen, so $n_{tot} \sim n_b$ and thus there are many photons for each p and e

Q: anticipated effect on T_{rec} *? higher or lower than* $T_{rec,naive}$ *?*

18

*How? find out the next time Nuclear and Particle Astrophysics is taught!

many photons per p and $e \rightarrow$ very easy to ionize H

- when $kT < B_{\rm H}$, there are still many photons in Wien tail with $h\nu > B_{\rm H}$
- thus expect $T_{rec,naive}$

in detail: recall that $n_{\gamma} \sim (kT/hc)^3$, so

$$n_{\rm tot} \sim \eta n_{\gamma} \sim \eta (kT/hc)^3$$
 (26)

and so Saha becomes

$$\frac{x_e^2}{1-x_e} \sim \frac{1}{\eta} \left(\frac{m_e c^2}{kT}\right)^{3/2} e^{-B_{\rm H}/kT}$$
(27)

note: $1/\eta \gg 1$ and $m_e c^2/kT \gg 1$

so when $x_e = 1/2$ we have (PS 8) $T_{rec} \simeq T_{rec,naive}/40 \sim 3000$ K $kT_{rec} \simeq 0.3 \text{ eV} \ll B_{\text{H}}$ and thus $1 + z_{rec} = T_{rec}/T_0 \sim 1000$

Saha Generalized

can generalize Saha to get ionization equilibrium for any species having $a^+ + e \leftrightarrow a^0 + \gamma$

$$\frac{n_{+}n_{e}}{n_{0}} = \frac{g_{+}g_{e}}{g_{0}} \left(2\pi \frac{m_{e}m_{+}kT}{m_{0}k^{2}}\right)^{3/2} e^{-B/kT}$$
(28)

with ${\boldsymbol{B}}$ the binding energy