
Astro 501: Radiative Processes

Lecture 31

April 8, 2013

Announcements:

• Problem Set 9 due 5pm today

• Problem Set 10 due 5pm Friday April 19

• ICES to be available online – please!

Last time: transitions involving bound states

Q: what approximations used?

found transition probability per unit time wij for i → j

Q: what does this depend on? what about wji for j → i?
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the transition probability per unit time

for i → f we have
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where Jω =
∫

Iω dΩ = 4π Jω, and

with e the polarization unit vector, and

the sum is over atomic electrons

for f → i

wif = wfi (2)

principle of detailed balance

now: evaluate operator ei
~k·~r

e ·
∑

j∇j
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the heart of the transition probability is

the matrix element
∫

ψ∗
fe
i~k·~r

e ·
∑

j∇jψi d
3x

the wavenumber k = ω/c= ∆E/h̄c

and the atomic wavefunctions are significant on scales ∼ a0
so: ~k · ~r ∼ ka0 ∼ a0∆E/h̄c ∼ Zv/c≪ 1

thus we write

ei
~k·~r = 1+ i~k · ~r −

1

2
(~k · ~r)2 + · · · (3)

and we approximate ei
~k·~r ≈ 1

Q: when would we be interested in the higher order terms?
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we see that ei
~k·~r = 1+ i~k · ~r+ · · ·

is an expansion in v/c

and we recall v/c≪ 1 for atoms with moderate Z ≪ 137

lesson: expansion is dominated by first nonzero term

• (kr)0 term: electric dipole approximation (more soon on this)

dominates unless identically zero, then

• (kr)1 term: electric quadrupole approximation

and comparable magnetic dipole term (B ∼ v/c E)

• (kr)2 term: electric octupole, magnetic quadrupole

Note that to describe these terms,

have to modify Schrödinger equation to appropriate order in v/c
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The Dipole Approximation

putting ei
~k·~r ≈ 1, the matrix element is

∫

ψ∗
fe ·

∑

j

∇jψi d
3x =

1

ih̄

〈

e · ~̂pj
〉

fi
(4)

i.e., related to the expected momentum of electron j

to bring this into a more familiar form, we note

the basic quantum operator relationship

~̂rj ~̂p
2
j − ~̂p

2
j ~̂rj = 2 i h̄ ~̂p (5)

5



and so given the atomic Hamiltonian

Ĥ0 =
1

2me

∑

j

~̂p
2
j + V (~̂r1, ~̂r2, . . . , ~̂rN) (6)

we have

~̂rjĤ0 − Ĥ0~̂rj = i
h̄~̂pj

me
(7)

a special case of the general result −ih̄∂tÂ = [Ĥ, Â]

and so we have

1

ih̄

〈

e · ~̂pj
〉

fi
=

me

h̄2

∫

ψ∗
fe · (~rjH0 −H0~rj)ψi d

3x (8)

=
me(Ei −Ef)

h̄2

∫

ψ∗
fe · ~rψi d

3x (9)
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thus the transition rate is

wfi =
4π2

h̄2c
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∣
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〈
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fi
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∣

∣

2
J (ωfi) (10)

where the electric dipole operator is

~d = e
∑

j

rj (11)

note that generally we have atoms in random orientations

so taking the angle average, we have

〈

|e · ~dfi|
2
〉

=
1

3
|dfi|

2 (12)

where

|dfi|
2 ≡ ~d∗fi ·

~dfi = |(dx)fi|
2 + |(dy)fi|

2 + |(dz)fi|
2 (13)
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Electric Dipole Transition Rate

the electric dipole transition rate is thus

〈

wfi
〉

=
4π2

3ch̄2
|dfi|

2 J (ωfi) (14)

thus the Einstein absorption coefficient for ℓ → u (“lower to

upper”) is

〈wℓu〉 = Bℓu J(νℓu) (15)

where J(νℓu) = J (νℓu)/4π since intensity is in one direction

and J (νℓu) = J (ωℓu) dω/dν = 2πJ (ωℓu), so

〈wℓu〉 =
1

2
Bℓu J (ωℓu) (16)

and we can now find all three Einstein coefficients Q: how?8



Einstein Coefficients

the Einstein coefficients in the electric dipole approximation are:

• true absorption

Bℓu =
8π2

3ch̄2
|dℓu|

2 =
32π4

3ch
|dℓu|

2 (17)

for non-degenerate atomic levels with gℓ = gu = 1 we have

• stimulated emission

Buℓ = Bℓu (18)

• spontaneous emission

Auℓ =
2ν3

c2h
Bℓu =

64π4 ν3uℓ |duℓ|
2

3c3h
(19)

this gives (at least in principle) a direct means to connect

the radiative coefficients jν and αν

to the atomic properties encoded in the dipole moment duℓ
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recall that the absorption coefficient is

αν =
hν

4π
nℓ Bℓu φ(ν) (20)

and so writing this in terms of the absorption cross section σℓu

αν = nℓ c σℓu(ν) (21)

so that the cross section and Einstein coefficient are related by

σℓu(ν) =
hν

4π c
Bℓu φ(ν) (22)

integrating and using
∫

φ(ν) dν = 1, we have

Bℓu =
4π c

hνℓν

∫

σℓu(ν) dν (23)

and thus our expressions for Bℓu also give σℓu1
0



Oscillator Strength

If the electron moves as a damped classical oscillator

with natural (resonant) frequency ω0
then (PS10) absorption rate is Bclasscial

ℓu J(νℓu) with

Bclassical
ℓu =

4π2e2

hνℓu mec
(24)

it is thus convenient write

Bℓu ≡ fℓu B
classical
ℓu (25)

σℓu(ν) =
πe2

mec
fℓu φ(ν) (26)

where the dimensionless oscillator strength is

fℓu =
me

πe2

∫

σℓu(ν) dν =
2me

3h̄2gℓe
2
(Eu − Eℓ)

∑

|dℓu|
2 (27)

Q: what about fuℓ?

1
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Einstein gℓBℓu = guBuℓ, and since we have absorption

gu fuℓ = − gℓfℓu (28)

so emission oscillator strengths are negative

if we sum over all transitions from i→ j,

can show that one-electron atoms have

∑

j fina

fij = 1 (29)

and N-electron atoms have

∑

j fina

fij = N (30)

the Thomas-Riche-Kuhn sum rule1
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Selection Rules

When is a transition between states i and f possible?

in general: the transition probability is always nonzero

but can be very small if the transition is suppressed,

usually due to a symmetry

e.g., a forbidden dipole transition can have a nonzero quadrupole

rate

we will focus on selection rules for dipole transitions

where recall that the dipole matrix element is

~dfi = e
∫

ψ∗
f

∑

j

~rj ψi d
3x (31)

Laporte’s rule:

no transitions between two states of the same parity

Q: what is a parity transformation?

Q: why is ~dfi = 0 if i and j have same parity?

1
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a parity transformation is the mapping ~r → −~r

note: electron wavefunctions are angular momentum eigenstates

and angular momentum eigenstates are parity eigenstates

thus: wavefunctions have definite parity

ψk(−~r) = πkψk(~r), with πk = ±1

thus if πi = πf , then

~dfi → ~d′fi = −e
∫

ψ∗
f

∑

j

~rj ψi d
3x = −~dfi (32)

and thus ~dfi = 0

the parity of an electron configuration (set of states)

is set by the electron angular momenta:

parity is (−1)
∑

ℓi, where each electron has ℓi

thus we conclude: no transitions between the same configuration

1
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Note that the atomic wavefunction is really a function

ψ(~r1, ~r2, . . . , ~rN) over all N electron coordinates

and at our level of approximation can be written in terms of

single-electron wavefunctions ua(~r1) ub(~r2) . . . uk(~rN)

where
∫

u∗aua d
3x= 1

thus the dipole operator ~rj picks out the wavefunctions

for a single electron, involving
∫

u∗a′~rj ua d
3rj

Q: implications?

1
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the dipole operator only involves
∫

u∗a′~rj ua d
3rj

for a single electron

thus we conclude

• all other electron wavefunctions remain the same

• one electron jumps per transition

• the transition dipole moment is that of the jumping electron

• in the jump the parity change is (−1)∆ℓ

vector nature of dipole operator imposes conditions on

single electron states in transitions:

∆ℓ = ±1 (33)

∆m = 0,±1 (34)

www: helium allowed transitions

1
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rules for total angular momentum quantum numbers

∆S = 0 (35)

∆L = 0,±1 (36)

∆J = 0,±1 except J = 0 to J = 0 (37)

note that we can have ∆L = 0

but always must have ∆ℓ = ±1

examples:

• 3s 2S1/2 → 4s 2S1/2
∆ℓ = 0: forbidden!

• 2p 2P1/2 → 3d 2D5/2

∆ℓ = 1, OK!

∆L = 1, OK!

∆S = 0, OK!

∆J = 2, forbidden!
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