Astro 501: Radiative Processes Lecture 32 April 10, 2013

Announcements:

- Problem Set 10 due 5pm Friday April 19
- ICES to be available online please!

Last time: we reached the summit! quantum mechanical expressions for

- Einstein A and B, or equivalently
- absorption cross section
- *Q: key quantum ingredient?*

Today: the payoff

 \vdash

the astrophysics of absorption lines; draws on Draine, *Physics of the Interstellar and Intergalactic Medium* Padmanabhan, *Theoretical Astrophysics* the Einstein coefficients in the electric dipole approximation are:

• true *absorption*

$$B_{\ell u} = \frac{8\pi^2}{3c\hbar^2} |d_{\ell u}|^2 = \frac{32\pi^4}{3c\hbar^2} |d_{\ell u}|^2 \tag{1}$$

for *non-degenerate atomic levels* with $g_{\ell} = g_u = 1$ we have

• stimulated emission

$$B_{u\ell} = B_{\ell u} \tag{2}$$

• spontaneous emission

$$A_{u\ell} = \frac{4\omega_{u\ell}^3 |d_{u\ell}|^2}{3c^3\hbar} = \frac{64\pi^4 \nu_{u\ell}^3 |d_{u\ell}|^2}{3c^3h}$$
(3)

notice that

$$\hbar\omega_{u\ell} A_{u\ell} = \frac{4\omega_{u\ell}^4 |d_{u\ell}|^2}{3c^3} \tag{4}$$

Ν

Q: what does this represent physically? why is this awesome?

Einstein $A_{u\ell}$ is $u \to \text{transition probability per unit time}$ \to spontaneous emission rate per atom in state u

thus $E_{u\ell} A_{u\ell} = \hbar \omega_{u\ell} A_{u\ell}$ is energy emission rate = power emitted per atom

$$P_{u\ell} = \frac{4\omega_{u\ell}^4 \ |d_{u\ell}|^2}{3c^3}$$
(5)

but recall our classical Larmor dipole result

$$P = \frac{4 |\vec{d}|^2}{3c^2} = \frac{4 \omega^4 |\vec{d}|^2}{3c^2}$$
(6)

quantum result has same form, with $|\vec{d}| = |d_{u/\ell}| = |\langle \ell | e\vec{r} | u \rangle|$

ω

results often expressed in terms of oscillator strength fQ: why? what's f? typical values? If the electron moves as a *damped classical oscillator* with natural (resonant) frequency ω_0 then (PS10) absorption rate is $B_{\ell u}^{\text{classcial}} J(\nu_{\ell u})$ with

$$B_{\ell u}^{\text{classical}} = \frac{4\pi^2 e^2}{h\nu_{\ell u} \ m_e c} \tag{7}$$

it is thus convenient write

$$B_{\ell u} \equiv f_{\ell u} B_{\ell u}^{\text{classical}}$$
(8)
$$\sigma_{\ell u}(\nu) = \frac{\pi e^2}{m_e c} f_{\ell u} \phi(\nu)$$
(9)

sum rule: $\sum_{j \text{ final}} f_{ij} = N$ for strong allowed transitions, $f \sim 1$

4

Shape of Spectral Lines

consider a transition $u \rightarrow \ell$ Q: most naïve guess for line profile $\phi(\nu)$

real astrophysical spectra show wide range profiles with nonzero observed widths

www: solar spectrum try $(\lambda_i, \Delta \lambda) = (6500, 100)$ nm; (4043, 5); (6704, 8)

www: spectrum of mystery star Q: how is this star different from the Sun? hint-look at the continuum

www: spectrum of interstellar matter Q: how is this gotten? how do we know the lines are ISM?

С

Q: reason(s) for nonzero observed linewidths?

Linewidths

naïvely: in transition $u \to \ell$, energy conservation requires $h\nu = E_u - E_\ell \equiv h_{u\ell}$, so $\phi_{\text{naive}}(\nu) = \delta(\nu - \nu_{u\ell})$: zero width!

But real observed linewidths are nonzero, for several reasons

- *intrinsic width* quantum effect, due to nonzero transition probability
- *thermal broadening* thermal motion of absorbers \rightarrow Doppler shifts
- collisional broadening

absorber collisions add to transition probability

- 0
- instrumental resolution

real spectrographs have finite resolving power $R = \lambda/\Delta\lambda = \nu/\Delta\nu \overset{\rm Keck}{\sim} 30,000$

Intrinsic Linewidth

in real atoms, any excited state u has nonzero transition rate to lower levels: $\Gamma_u = 1/\tau_u$, with τ_u the state *lifetime*

thus: state u is only populated for timescales $\delta t \sim \tau_u$

but in quantum mechanics, over finite time Δt , energy only determined to within finite resolution

$$\Delta E \ \Delta t \gtrsim \frac{\hbar}{2} \tag{10}$$

the energy-time uncertainty relation

thus state u, level energy E_u has intrinsic spread $\delta E_u \sim \hbar / \tau_u = \hbar \Gamma_u$

Q: consequence for line profile?

level u energy intrinsic spread $\delta E_u \sim \hbar/\tau_u = \hbar\Gamma_u$ so for $u \to \ell$, transition frequency $\nu_{u\ell} = (E_u - E_\ell)/h$ has natural or *intrinsic width* $\delta \nu_{n\ell} = \Gamma_{u\ell} = \Gamma_u + \Gamma_\ell$

level lifetimes related to Einstein A = decay rates:

$$\Gamma_u = \Gamma_{u \to \text{anything}} = \sum_{u \to \text{allowed } j} A_{uj}$$
(11)

where sum is over all energetically allowed transitions from u

for *damped classical oscillator*, damping $\Gamma \dot{x}$ leads (PS10) to absorption cross section

$$\sigma_{\ell u}(\nu) = \frac{2\pi e^2}{m_e c} \frac{\Gamma/2}{(\omega - \omega_0)^2 + (\Gamma/2)^2} = \frac{\pi e^2}{m_e c} \frac{4\Gamma}{16\pi^2(\nu - \nu_0)^2 + \Gamma^2}$$

^{∞} Q: behavior at $\nu = \nu_0$? $\nu \gg \nu_0$? what about a real atomic transition $u \to \ell$?

for a damped classical oscillator, we have

$$\sigma(\nu) = \pi e^2 / m_e c \ \phi(\nu) = B_{\text{classical}} \ \phi(\nu) \tag{12}$$

with profile function (normalized to $\int \phi(\nu) \ d\nu = 1)$ of

$$\phi(\nu) = \frac{4\Gamma}{16\pi^2(\nu - \nu_0)^2 + \Gamma^2}$$

a real atomic transition $u \rightarrow \ell$ has same properties but with overall factor of oscillator strength:

$$\sigma_{u\ell}(\nu) = \pi e^2 / m_e c \ f_{u\ell} \ \phi_{u\ell}(\nu) = B_{\text{classical}} \ f_{u\ell} \ \phi(\nu)$$
(13)

with *Lorentzian* profile shape

$$\phi_{u\ell}^{\text{intrinsic}}(\nu) = \frac{4\Gamma_{u\ell}}{16\pi^2(\nu - \nu_{u\ell})^2 + \Gamma_{u\ell}^2}$$

9

full width at half-maximum: $(\Delta \nu)_{\text{FWHM}} = \Gamma_{u\ell}/2\pi$

note that line profiles and linewidths are often expressed in line-of-sight *velocity* units

motivated by the non-relativistic Doppler formula, we have

$$v(\nu) = \frac{\nu - \nu_{u\ell}}{\nu_{u\ell}} c \tag{14}$$

so that $v(\nu_{u\ell}) = 0$ at line center

thus the FWHM in velocity units is

$$(\Delta v)_{\text{FWHM}} = \frac{(\Delta \nu)_{\text{FWHM}}}{\nu_{u\ell}} c = \frac{\Gamma_{u\ell}\lambda_{u\ell}}{2\pi}$$
(15)

for optical and UV transitions, intrinsic linewidths generally small: for Lyman- α , $(\Delta v)_{\text{FWHM},\text{Ly}\alpha} = 0.0121 \text{ km/s}$ 5 *Q: implications?*

Thermal Linewidth

intrinsic linewidths are generally narrow so other broadening effects can be important

thermal motion of atoms leads to Doppler shifts of incident spectra as seen by the atoms so absorption occurs "off resonance"

a *Gaussian distribution* of line-of-sight velocities has velocity probability distribution

$$p(v) \ dv = \frac{1}{\sqrt{2\pi\sigma_v}} e^{-(v-v_0)^2/2\sigma_v^2} \equiv \frac{1}{\sqrt{\pi b}} e^{-(v-v_0)^2/b^2} \ dv \qquad (16)$$

where v_0 is the bulk or "systemic" velocity along sightline $\sigma_v = b/\sqrt{2}$ is the velocity dispersion

Q: v_0 , σ_v , and b for thermal gas at rest??

11

a thermal gas at T of particles with mass m, and at rest in bulk, has

$$p_T(v) \ dv = \sqrt{\frac{m}{2\pi kT}} e^{-mv^2/2kT}$$
(17)

from which we identify

$$v_{0} = 0$$
(18)

$$\sigma_{v} = v_{T} \equiv \sqrt{\frac{kT}{m}} = 9.12 \text{ km/s} \left(\frac{T}{10^{4} \text{ K}}\right) \left(\frac{1 \text{ amu}}{m}\right)$$
(19)

$$b = \sqrt{\frac{2kT}{m}}$$
(20)

Q: implications of numerical result?

Q: how to combine intrinsic and thermal broadening?

Voigt Profile

in general both intrinsic and thermal broadening present and so resulting line profile includes both effects

observed profile is *weighted average*

of natural/intrinsic width with Doppler shifted center

$$\nu_{u\ell}' = \left(1 - \frac{v}{c}\right)\nu_{u\ell} \tag{21}$$

giving the Voigt profile

$$\phi_{\text{Voigt}}(\nu) = \frac{1}{\sqrt{\pi} \ b} \int e^{-v^2/b^2} \ \frac{4\Gamma_{u\ell}}{16\pi^2 \left[\nu - (1 - v/c)\nu_{u\ell}\right]^2 + \Gamma_{u\ell}^2} \ dv$$

integral has no simple analytic result

 \Box Q: simple and interesting approximation?

we saw that for astrophysical situations, often intrinsic linewidths $(\Delta v)_{\rm FWHM} \ll b$ thermal linewidths

simple approximation: intrinsic absorption is δ -function $\phi^{\text{intrinsic}}(\nu) \rightarrow \delta[\nu - (1 - v/c)\nu_{u\ell}]$

this gives a thermally-dominated Voigt profile

$$\phi_{\text{Voigt}}(\nu) \rightarrow \phi_T(\nu) = \frac{1}{\sqrt{\pi}} \frac{c}{\nu_{u\ell} \ b} \exp\left[-\frac{v(\nu)^2}{b^2}\right]$$
 (22)

valid in the "thermal core" $\nu - \nu_{u\ell} \ll \Gamma_{u\ell}$, with

$$v(\nu) \equiv \left(\frac{\nu - \nu_{u\ell}}{\nu_{u\ell}}\right) c \tag{23}$$

for $\nu - \nu_{u\ell} \gg b$, in the "damping wings," we have

$$\phi_{\text{Voigt}}(\nu) \approx \frac{1}{4\pi^2} \frac{\Gamma_{u\ell}}{(\nu - \nu_{u\ell})^2}$$
(24)

14

Q: sketch of $\phi_{\text{Voigt}}(\nu)$? *of* $\sigma_{u\ell}(\nu)$?

so imagine we can resolve a strong absorption line and measure the shape vs ν or λ to high precision

Q: what will we see?

Q: what will we learn?

Q: what if the line is not very strong?

Q: what if we only have moderate spectral resolution?

www: overview of the optical solar spectrum Q: what are we seeing?

15

Collisional Linewidth

if particle densities are high, atomic collisions are rapid and can drive transitions $u\leftrightarrow \ell$

thus there is a nonzero collision rate $\Gamma_{\rm coll}$ per atom where $\Gamma_{\rm coll}=n~\sigma_{\rm coll}v$

heuristically: this decreases excited state lifetimes and thus adds to energy uncertainty

so total transition rate is $\Gamma_{int} + \Gamma_{coll}$: collisions add damping, in density- and temperature-dependent way

thus collisional broadening a measure of density and temperature thus also know as "pressure broadening"