Astro 501: Radiative Processes Lecture 4 Jan 21, 2013

Announcements:

- Problem Set 1 at start of class next Friday Erratum: err, we're ASTR 501 in 2013, not Cosmo in 2010! Erratum: find the source function S_{ν} for 2(c), not 2(a) Erratum: Problem 3c: cite full of typos, should read Hoffmann, Tappert, et al (1998) 1998A&AS..128..417H and Table 3 is from http://cdsarc.u-strasbg.fr/vizier/ftp/cats/VII/199/ReadMe
- Office hours: BDF today 3-4pm, or by appointment TA: tomorrow 1:30-3:00pm

Last time: ingredients of radiative transfer

- free space Q: meaning? I_{ν} result? significance?
- emission Q: how quantified? example?
- absorption Q: how quantified? example?

free space:

no emission, absorption, scattering $\rightarrow I_{\nu_1} = I_{\nu_2}$

$$\frac{dI_{\nu}}{ds} \stackrel{\text{free}}{=} 0 \tag{1}$$

this means: when viewing an object across free space, the *intensity of the object is constant* regardless of distance to the object!

⇒ conservation of surface brightness

emission: emission coefficient is

$$j_{\nu} = \frac{d\mathcal{E}_{\text{emit}}}{dV \ dt \ d\Omega \ d\nu} \tag{2}$$

and the *intensity change* is

$$dI_{\nu} \stackrel{\text{sources}}{=} j_{\nu} ds \tag{3}$$

absorption: modeled as:

$$dI_{\nu} = -\alpha_{\nu} \ I_{\nu} \ ds \tag{4}$$

in terms of absorption cross section σ_{ν} or opacity κ_{ν}

$$dI_{\nu} \stackrel{\text{abs}}{=} -n_{\text{a}} \ \sigma_{\nu} \ I_{\nu} \ ds = \rho \ \kappa_{\nu} \ I_{\nu} \ ds \tag{5}$$

which has the expected form, with

$$\alpha_{\nu} = n_{\mathsf{a}} \ \sigma_{\nu} \tag{6}$$

note that absorption depends on

- ullet microphysics via the cross section $\sigma_{
 u}$
- astrophysics via density n_{abs} of scatterers

often, write $\alpha_{\nu} = \rho \kappa_{\nu}$, defines **opacity** $\kappa_{\nu} = (n/\rho)\sigma_{\nu} \equiv \sigma_{\nu}/m$ with $m = \rho/n$ the mean mass per absorber

Q: so what determines σ_{ν} ? e.g., for electrons?

Cross Sections

Note that the absorption **cross section** σ_{ν} is and *effective* area presented by absorber

for "billiard balls" = neutral, opaque, macroscopic objects this is the same as the geometric size but generally, cross section is *unrelated to geometric size* e.g., electrons are point particles (?) but still scatter light

- so *generalize* our ideas so that $dI_{\nu} = -n_{a} \sigma_{\nu} ds$ defines the cross section
- determined by the details of light-matter interactions
- can be—and usually is!—frequency dependent
- differ according to physical process
 the study of which will be the bulk of this course!

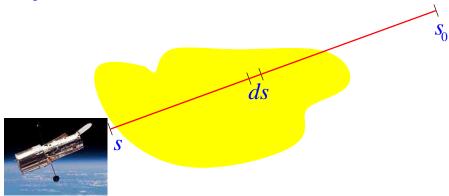
Note: "absorption" here is anything removing energy from beam \rightarrow can be true absorption, but also scattering

The Equation of Radiative Transfer

Now combine effects of sources and sinks that change intensity as light propagates

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{7}$$

equation of radiative transfer



- fundamental equation in this course
- ullet sources parameterized via $j_
 u$
- sinks parameterized via $\alpha_{\nu} = n_{\rm a} \, \sigma_{\nu} = \rho \kappa_{\nu}$

Transfer Equation: Limiting Cases

equation of radiative transfer:

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{8}$$

Sources but no Sinks

if sources exist but there are no sinks: $\alpha_{\nu} = 0$

$$\frac{dI_{\nu}}{ds} = j_{\nu} \tag{9}$$

solve along path starting at sightline distance s_0 :

$$I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu} \, ds' \tag{10}$$

- the *increment* in intensity is due to integral of sources *along sightline*
- for $j_{\nu} \to 0$: free space case and $I_{\nu}(s) = I_{\nu}(s_0)$: recover surface brightness conservation!

Special Case: Sinks but no Sources

if absorption only, no sources: $j_{\nu} = 0$

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} \tag{11}$$

and so on a sightline from s_0 to s

$$I_{\nu}(s) = I_{\nu}(s_0) e^{-\int_{s_0}^{s} \alpha_{\nu} ds'}$$
(12)

- intensity decrement is exponential!
- exponent depends on line integral of absorption coefficient

useful to define **optical depth** via $d\tau_{\nu} \equiv \alpha_{\nu} ds$

$$\tau_{\nu}(s) = \int_{s_0}^{s} \alpha_{\nu} \ ds' \tag{13}$$

and thus for absorption only $I_{\nu}(s) = I_{\nu}(s_0)e^{-\tau_{\nu}(s)}$

Mean Free Path

Average optical depth is

$$\langle \tau_{\nu} \rangle = \frac{\int \tau_{\nu} e^{-\tau_{\nu}} d\tau_{\nu}}{\int e^{-\tau_{\nu}} d\tau_{\nu}} = 1$$

for constant density n_a , this occurs at the **mean free path**

$$\ell_{\mathsf{mfp},\nu} = \frac{1}{n_{\mathsf{a}} \ \sigma_{\nu}}$$

average distance between collisions

similarly *mean free time* between collisions

$$\tau_{\nu} = \frac{\ell_{\mathsf{mfp},\nu}}{c} \tag{14}$$

where we used v = c for all photons

Optical Depth

optical depth, in terms of cross section

$$\tau_{\nu}(s) = \int_{s_0}^{s} n_{a} \ \sigma_{\nu} \ ds' = \int_{s_0}^{s} \frac{ds'}{\ell_{\text{mfp},\nu}}$$
 (15)

$$=$$
 number of mean free paths (16)

optical depth counts mean free paths along sightline i.e., typical number of absorption events

Limiting cases:

- $ullet au_
 u \ll 1$: optically thin absorption unlikely o transparent
- $ullet au_
 u \gg 1$: optically thick absorption overwhelmingly likely o opaque

Column Density

Note "separation of variables" in optical depth

$$\tau_{\nu}(s) = \underbrace{\sigma_{\nu}}_{\text{microphysics}} \underbrace{\int_{s_0}^{s} n_{\mathsf{a}}(s') \ ds'}_{\text{somation}}$$

$$\underbrace{17}_{\mathsf{microphysics}}$$

From observations, can (sometimes) infer τ_{ν} Q: how? but cross section σ_{ν} fixed by absorption microphysics i.e., by theory and/or lab data

absorber astrophysics controlled by column density

$$N_a(s) \equiv \int_{s_0}^s n_a(s') \ ds' \tag{18}$$

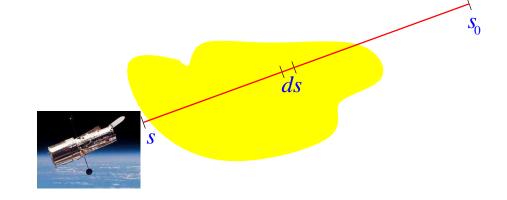
line integral of number density over entire line of sight s cgs units $[N_a] = [cm^{-2}]$

Q: what does column density represent physically?

column density

$$N_a(s) \equiv \int_{s_0}^s n_a \ ds'$$

so
$$\tau_{\nu} = \sigma_{\nu} N_{\rm a}$$



- column density is projection of 3-D absorber density onto 2-D sky, "collapsing" the sightline "cosmic roadkill"
- ullet if source is a slab ot to sightline, then N_a is surface density
- if source is multiple slabs \bot to sightline, then N_a sums surface density of all slabs

Q: from N_a , how to recover 3-D density n_a ?

Radiation Transfer Equation, Formal Solution

equation of transfer

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{19}$$

divide by α_{ν} and rewrite in terms of optical depth $d\tau_{\nu}=\alpha_{\nu}ds$

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{20}$$

with the source function

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} = \frac{j_{\nu}}{n_{\mathsf{a}}\sigma_{\nu}} \tag{21}$$

Q: source function dimensions?

Source Function

 $S_{\nu}=j_{\nu}/\alpha_{\nu}$ has dimensions of surface brightness What does it represent physically?

consider the case where the *same* matter is responsible for both emission and absorption; then:

- $\alpha_{\nu} = n\sigma_{\nu}$, with n the particle number density
- $j_{\nu} = n \, dL_{\nu}/d\Omega$, with $dL_{\nu}/d\Omega$ the specific power emitted *per particle* and per solid angle and thus we have

$$S_{\nu} = \frac{dL_{\nu}/d\Omega}{\sigma_{\nu}} \tag{22}$$

specific power per unit effective area and solid angle → effective surface brightness of each particle!

spoiler alert: S_{ν} encodes emission vs absorption relation ultimately set by quantum mechanical symmetries e.g., time reversal invariance, "detailed balance"

Radiative Transfer Equation: Formal Solution

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{23}$$

If emission independent of I_{ν} (not always true! Q: why?) Then can formally solve

Write $I_{\nu} = \Phi_{\nu} e^{-\tau_{\nu}}$, i.e., use integrating factor $e^{-\tau_{\nu}}$, so

$$\frac{d(\Phi_{\nu}e^{-\tau_{\nu}})}{d\tau_{\nu}} = e^{-\tau_{\nu}}\frac{d\Phi_{\nu}}{d\tau_{\nu}} - \Phi_{\nu}e^{-\tau_{\nu}}$$
(24)

$$= -\Phi_{\nu}e^{-\tau_{\nu}} + S_{\nu} \tag{25}$$

and so we have

$$\frac{d\Phi_{\nu}}{d\tau_{\nu}} = e^{+\tau_{\nu}} S_{\nu}(\tau_{\nu}) \tag{26}$$

and thus

$$\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_{0}^{\tau_{\nu}} e^{\tau'_{\nu}} S_{\nu}(\tau'_{\nu}) d\tau'_{\nu}$$
 (27)

$$\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_{0}^{\tau_{\nu}(s)} e^{\tau'_{\nu}} S_{\nu}(\tau'_{\nu}) d\tau'_{\nu}$$
 (28)

and then

$$I_{\nu}(s) = \Phi_{\nu}(s) e^{-\tau_{\nu}(s)} \tag{29}$$

$$I_{\nu}(s) = \Phi_{\nu}(s) e^{-\tau_{\nu}(s)}$$

$$= I_{\nu}(0) e^{-\tau_{\nu}(s)} + \int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau'_{\nu}]} S_{\nu}(\tau'_{\nu}) d\tau'_{\nu}$$
 (30)

in terms of original variables

$$I_{\nu}(s) = I_{\nu}(0)e^{-[\tau_{\nu}(s) - \tau_{\nu}(s_{0})]} + \int_{s_{0}}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]} j_{\nu}(\tau'_{\nu}) ds'$$

Q: what strikes you about these solutions?

Formal solution to transfer equation:

$$I_{\nu}(s) = I_{\nu}(0) \ e^{-\tau_{\nu}(s)} + \int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} \ S_{\nu}(\tau_{\nu}') \ d\tau_{\nu}'$$
 (31)

in terms of original variables

$$I_{\nu}(s) = I_{\nu}(0)e^{-[\tau_{\nu}(s) - \tau_{\nu}(s_{0})]} + \int_{s_{0}}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]} j_{\nu}(\tau'_{\nu}) ds'$$

- initial intensity degraded by absorption
- ullet added intensity depends on sources along column but optical depth weights against sources with $au_
 u \gtrsim 1$

Formal Solution: Special Cases

For spatially *constant* source function $S_{\nu} = j_{\nu}/\alpha_{\nu}$:

$$I_{\nu}(s) = e^{-\tau_{\nu}(s)}I_{\nu}(0) + S_{\nu} \int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} d\tau_{\nu}'$$

$$= e^{-\tau_{\nu}(s)}I_{\nu}(0) + (1 - e^{-\tau_{\nu}(s)}) S_{\nu}$$
(32)

- ullet optically thin: $au_
 u\ll 1$ $I_{\nu} \approx (1 - \tau_{\nu})I_{\nu}(0) + \tau_{\nu}S_{\nu}$
- ullet optically thick: $au_
 u\gg 1$

$$I_{\nu} \rightarrow S_{\nu}$$

→ optically thick intensity is source function!

what's going on? rewrite:

$$\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{\mathsf{mfp},\nu}} (I_{\nu} - S_{\nu}) \tag{34}$$

 $\ \ \,$ Q: what happens if $I_{\nu} < S_{\nu}$? if $I_{\nu} > S_{\nu}$?

Q: lesson? characteristic scales?

Radiation Transfer as Relaxation

$$\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{\text{mfp},\nu}} (I_{\nu} - S_{\nu}) \tag{35}$$

- if $I_{\nu} < S_{\nu}$, then $dI_{\nu}/ds > 0$: \rightarrow intensity *increases* along path
- if $I_{\nu} > S_{\nu}$, intensity decreases

equation is "self regulating!" I_{ν} "relaxes" to "attractor" S_{ν}

and characteristic lengthscale for relaxation is mean free path! recall $S_{\nu}=\ell_{\mathrm{mfp},\nu}j_{\nu}\approx$: this is "source-only" result for sightline pathlength $s=\ell_{\mathrm{mfp},\nu}$

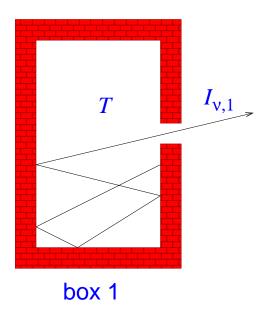
Blackbody Radiation

Radiation and Thermodynamics

consider an enclosure ("box 1") in thermodynamic equilibrium at temperature T

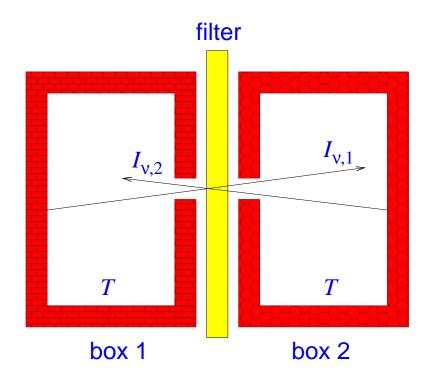
the matter in box 1

- is in random thermal motion
- will absorb and emit radiation details of which depends on the details of box material and geometry
- but equilibrium
 - → radiation field in box doesn't change



open little hole: escaping radiation has intensity $I_{
u,1}$

now add another enclosure ("box 2"), also at temperature T but made of *different material*



separate boxes by *filter passing only frequency* ν radiation from each box incident on screen

Q: imagine $I_{\nu,1} > I_{\nu,2}$; what happens?

Q: lesson?

Blackbody Radiation

if both boxes at same $T \Rightarrow$ no net energy transfer but this requires $I_{\nu,1} = I_{\nu,2}$ and so the radiation is:

- independent of the composition of the box
- a universal function of T
- blackbody radiation with intensity $B_{\nu}(T)$

Spoiler alert (useful for PS1): blackbody radiation

$$B_{\nu}(T) = \frac{2h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1} \tag{36}$$

with h = Planck's constant, k = Boltzmann's constant

in wavelength space

$$B_{\lambda}(T) = 2hc^2 \frac{\lambda^{-5}}{e^{hc/\lambda kT} - 1} \tag{37}$$

blackbody integrated intensity:

$$B(T) = \int B_{\nu}(T) d\nu = \int B_{\lambda}(T) d\lambda \tag{38}$$

$$= \frac{2\pi^4 k^4 T^4}{15 c^3 h^3} = \frac{\sigma}{\pi} T^4 = \frac{c}{4\pi} a T^4 \tag{39}$$

blackbody flux

$$F_{\nu}(T) = \pi B_{\nu}(T) = \frac{2\pi h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
 (40)

$$F(T) = \pi B(T) \equiv \sigma T^4 = \frac{2\pi^5}{15} \frac{k^4 T^4}{c^2 h^3}$$
 (41)

defines Stefan-Boltzmann constant

$$\sigma = \frac{2\pi^5}{15} \frac{k^4}{c^2 h^3} = 5.670 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ K}^{-4}$$
 (42)

Q: to order of magnitude: integrated number density?

Note: blackbody quantities determined entirely by Tno adjustable parameters!

mean number density: dimensions $[n] = [length^{-3}]$ can only depend on T, and physical constants h, c, kcan form only one length: [hc/kT] = [length] \rightarrow expect $n \sim (hc/kT)^3$

photon number density

$$n_{\nu}(T) = \frac{4\pi B_{\nu}(T)}{hc\nu} = \frac{8\pi}{c^3} \frac{\nu^2}{e^{h\nu/kT} - 1}$$

$$n(T) = 16\pi\zeta(3) \left(\frac{kT}{hc}\right)^3$$
(43)

$$n(T) = 16\pi\zeta(3) \left(\frac{kT}{hc}\right)^3 \tag{44}$$

where $\zeta(3) = 1 + 1/2^3 + 1/3^3 + 1/4^3 + \dots = 1.2020569\dots$

Q: implications?

blackbody photon number density

$$n(T) = 16\pi\zeta(3) \left(\frac{kT}{hc}\right)^3 \tag{45}$$

i.e., $n \propto T^3$

So if temperatures changes, photon number changes blackbody photon number is not conserved photons massless → can always make more!

if heat up, photon number increases and spectrum relaxes to blackbody form

blackbody energy density?

 \aleph to order of magnitude, expect $u \sim nkT \sim (kT)^4/(hc)^3$

integrated energy density

$$u_{\nu}(T) = \frac{4\pi B_{\nu}(T)}{c} = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{h\nu/kT} - 1}$$

$$u(T) = \frac{4\pi B(T)}{c} = \frac{8\pi^5 k^4 T^4}{15 c^3 h^3}$$

$$\equiv aT^4 = \frac{4\sigma}{c} T^4$$
(46)

$$u(T) = \frac{4\pi B(T)}{c} = \frac{8\pi^5 k^4 T^4}{15 c^3 h^3}$$
 (47)

$$\equiv aT^4 = \frac{4\sigma}{c}T^4 \tag{48}$$

defines Stefan-Boltzmann radiation density constant $a = 4\sigma/c$

mean photon energy:

only one way to form an energy

$$\rightarrow$$
 expect $\langle E \rangle \sim kT$

exact result:

$$\langle E \rangle \equiv \frac{u(T)}{n(T)}$$

$$= \frac{\pi^4}{30\zeta(3)} kT = 2.701 kT$$
(50)

$$= \frac{\pi^4}{30\zeta(3)}kT = 2.701 \, kT \tag{50}$$

Director's Cut Extras

Radiative Forces

generalize our definition of flux: energy flux in direction \hat{n} is

$$\vec{F}_{\nu} = \int I_{\nu} \ \hat{n} \ d\Omega \tag{51}$$

recovers old result if we take $\hat{z} \cdot \vec{F}_{\nu}$

each photon has momentum E/c, and so momentum per unit area and pathlength absorbed by medium with absorption coefficient α_{ν} :

$$\vec{\mathcal{F}} = \frac{d\vec{p}}{dt \ dA \ ds} = \frac{1}{c} \int \alpha_{\nu} \ \vec{F}_{\nu} \ d\nu \tag{52}$$

but $dA \ ds = dV$, and $d\vec{p}/dt$ is force,

 $\stackrel{\triangleright}{\bowtie}$ so $\vec{\mathcal{F}}$ is the **force density**

i.e., force per unit volume, on absorbing matter

force per unit mass is

$$\vec{f} = \frac{\vec{\mathcal{F}}}{\rho} = \frac{1}{c} \int \kappa_{\nu} \ \vec{F}_{\nu} \ d\nu \tag{53}$$

Note: we have accounted only force due to absoption of radiation

What about emission?

If emission is isotropic, no net force if not, must include this as a separate term