Astro 501: Radiative Processes Lecture 10 Feb 6, 2013

Announcements:

- Problem Set 3 due next time
- BDF office hours shortened today
- TA office hours 1:30-3:00 tomorrow

Last time: began classical EM radiation

- Q: energy density?
- *Q: Poynting vector?*
- □ Today: plane waves & polarization

Maxwell and Fourier Modes

We have seen: wave equation demands $\omega = ck$ But Maxwell equations impose further constraints

Consider arbitrary Fourier modes $\vec{E} = E_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)} \hat{a}_1$, and $\vec{B} = B_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)} \hat{a}_2$

Maxwell equations in vacuum impose conditions: for example, Coulomb's law $\nabla \cdot \vec{E} = 0$ implies

$$\vec{k} \cdot \vec{E} = 0 \tag{1}$$

or equivalently $\hat{n} \cdot \hat{a}_1 = 0$

similarly, no monopoles requires

$$\vec{k} \cdot \vec{B} = 0 \qquad \hat{n} \cdot \hat{a}_2 = 0 \tag{2}$$

Ν

Q: what does this mean physically for the waves?

we found $\vec{k} \cdot \vec{E} = \vec{k} \cdot \vec{B} = 0$

- \rightarrow propagation orthogonal to field vectors
- \Rightarrow EM waves are transverse

Faraday's law requires $\omega \vec{B} = c\vec{k} \times \vec{E}$, or

$$\vec{B} = \frac{c\vec{k}}{\omega} \times \vec{E} = \hat{n} \times \vec{E}$$
(3)

and Ampère's law gives $\vec{E}=-\hat{n}\times\vec{B}$

Q: what do these conditions imply for the waves?

Faraday's law gives $\vec{B} = \hat{n} \times \vec{E}$, so $\vec{E} \cdot \vec{B} = \vec{E} \cdot (\hat{n} \times \vec{E}) = 0$ (4) $\Rightarrow \vec{E} \text{ and } \vec{B} \text{ are orthogonal to each other!}$

Faraday also implies

$$|B|^{2} = \hat{n}^{2}|E|^{2} - |\hat{n} \cdot \vec{E}|^{2} = |E|^{2}$$
(5)

using vector identity $(\hat{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \hat{a} \cdot \vec{c} \ \vec{b} \cdot \vec{d} - \hat{a} \cdot \vec{d} \ \vec{b} \cdot \vec{c}$

we have: $E_0 = B_0$: field amplitudes are equal

which in turn means: $\hat{a}_2 = \hat{n} \times \hat{a}_1$, and $\hat{a}_1 \cdot \hat{a}_2 = 0$ $\rightarrow (\hat{n}, \hat{a}_1, \hat{a}_2)$ form an *orthogonal basis*

Monochromatic Plane Wave: Time Averaging

at a given point in space, field amplitudes vary sinusoidally with time \rightarrow energy density and flux also sinusoidal but we are interested in timescales $\gg \omega^{-1}$:

 \rightarrow take *time averages*

Useful to use *complex* field amplitudes then take *real part* to get physical component

handy theorem: for $A(t) = Ae^{i\omega t}$ and $B(t) = Be^{i\omega t}$ i.e., same time dependence, then time-averaged products

$$\langle \operatorname{Re}A(t) | \operatorname{Re}B(t) \rangle = \frac{1}{2} \operatorname{Re}(\mathcal{AB}^*) = \frac{1}{2} \operatorname{Re}(\mathcal{A} * \mathcal{B})$$
 (6)

С

Monochromatic Plane Wave: Energy, Flux

time-averaged Poynting flux amplitude

$$\langle S \rangle = \frac{c}{8\pi} \operatorname{Re}(E_0 B_0^*) = \frac{c}{8\pi} |E_0|^2 = \frac{c}{8\pi} |B_0|^2$$
(7)

time-averaged energy density

$$\langle u \rangle = \frac{c}{8\pi} |E_0|^2 = \frac{c}{8\pi} |B_0|^2$$
 (8)

Q: given wave direction \vec{n} , degrees of freedom in \vec{E}, \vec{B} ?

Polarization

EM waves propagating in a particular direction \hat{n} must be transverse $\vec{k} \cdot \vec{E} = \hat{n} \cdot \vec{E} = 0$ \rightarrow nonzero \vec{E} components lie in plane \perp to \hat{n}

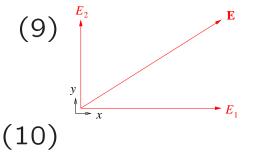
two independent components

for convenience: choose coordinates where $\hat{n} = \hat{z}$ so fields are in transverse plane x - yphysical electric vector is *real part* of

 $\vec{E} = (E_1 \ \hat{x} + E_2 \ \hat{y}) \ e^{-i\omega t}$

complex amplitudes can be written

$$E_1 = \mathcal{E}_1 \ e^{i\phi_1} \quad E_2 = \mathcal{E}_2 \ e^{i\phi_2}$$



 $\overline{}$

Q: but wait-what about the magnetic field?

transverse electric field has two independent components but once \vec{E} determined, then $\vec{B} = \hat{n} \times \vec{E}$ at every point along sightline \hat{n} , magnetic \perp electric \Rightarrow no additional degrees of freedom for \vec{B}

monochromatic plane wave *has two independent components*

consider plane at fixed $z = \hat{n} \cdot \vec{r}$, say z = 0the two *physical* components of the field evolve as

$$E_x = \mathcal{E}_1 \cos(\omega t - \phi_1) \quad E_y = \mathcal{E}_2 \cos(\omega t - \phi_2)$$
 (11)

with E_1, E_2 can take any values, and ϕ_1, ϕ_2 independent but only difference $\phi_1 - \phi_2$ can be important \rightarrow a total of *3 independent parameters* describe the fields

[∞] Q: \vec{E} time evolution if E_1 and E_2 can differ, but $\phi_1 - \phi_2 = 0$? Q: same but $\phi_1 - \phi_2 = \pi$?

Linear Polarization

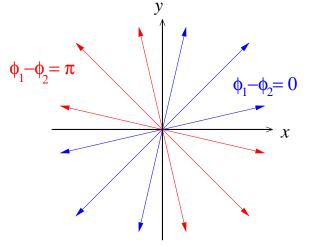
For $\phi_1 - \phi_2 = 0$, we have

$$E_x = \mathcal{E}_1 \, \cos(\omega t - \phi_1) \quad E_y = \mathcal{E}_2 \, \cos(\omega t - \phi_1) = \frac{\mathcal{E}_2}{\mathcal{E}_1} E_x \quad (12)$$

fields share same sign and same sinusoidal time dependence \vec{E} sweeps out *line with positive slope* in x - y plane \rightarrow **linear polarization**

For $\phi_1 - \phi_2 = \pi$, fields share time dependence but have opposite sign \rightarrow linear polarization with negative slope

Q: what is \vec{E} time dependence if $\mathcal{E}_1 = \mathcal{E}_2$ but $\phi_1 - \phi_2 = \pi/2? - \pi/2$



Circular Polarization

if $\mathcal{E}_1 = \mathcal{E}_2$ but $\phi_1 - \phi_2 = \pi/2$

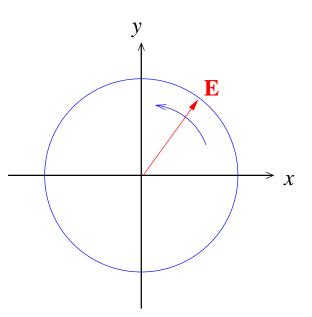
 $E_x = \mathcal{E}_1 \cos(\omega t - \phi_1)$ $E_y = \mathcal{E}_1 \sin(\omega t - \phi_1)$

 \vec{E} sweeps counterclockwise circle as seen approaching observer \Rightarrow circular polarization Engineering: "*lefthanded*" circular polarization \rightarrow but using righthand rule: *positive helicity*

if $\mathcal{E}_1 = \mathcal{E}_2$ but $\phi_1 - \phi_2 = -\pi/2$

 \rightarrow "*righthand*" circular polarization, or *negative helicity*

in the most general case: $\mathcal{E}_1 \neq \mathcal{E}_2$ and $\phi_1 - \phi_2$ arbitrary *Q*: what is \vec{E} time dependence?



Elliptical Polarization

E

х

in the general case

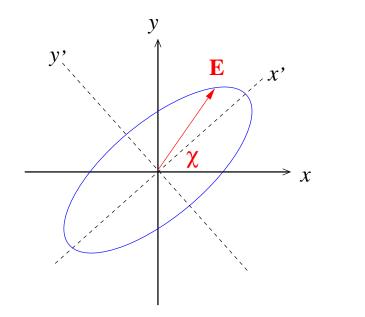
 $E_x = \mathcal{E}_1 \cos(\omega t - \phi_1)$ $E_y = \mathcal{E}_2 \cos(\omega t - \phi_2)$

intuitively, blends linear and circular features: \rightarrow elliptical polarization

ellipse *orientation* fixed by $\mathcal{E}_1 - \mathcal{E}_2$ difference ellipse *eccentricity* and *helicity* fixed by $\phi_1 - \phi_2$ difference

in coordinates (x', y') rotated to align with *principal axes*

 $E'_{x} = \mathcal{E}_{0} \cos \beta \cos(\omega t) \quad E'_{y} = \mathcal{E}_{0} \sin \beta \sin(\omega t)$ $\stackrel{\Box}{=} \text{ for some } \beta \in [-\pi/2, +\pi/2]$ $Q: \text{ evolution if } \beta > 0?$



12

 $E'_x = \mathcal{E}_0 \cos\beta \cos(\omega t)$ $E'_y = -\mathcal{E}_0 \sin\beta \sin(\omega t)$ principle axes: $\mathcal{E}_0 \cos\beta$ and $\mathcal{E}_0 \sin\beta$

if $\beta \in [0, \pi/2]$: ellipse sweeps clockwise \rightarrow "righthanded" elliptical polarization, negative helicity if $\beta \in [0, \pi/2]$: "lefthanded", positive helicity

Q: what give linear polarization? circular?

we want to relate x - y field parameters $\mathcal{E}_1, \mathcal{E}_2, \phi_1, \phi_2$ with principle axes x' - y' parameters $\mathcal{E}_0, \beta, \chi$ rotate x - y components by angle χ

 $E_x = \mathcal{E}_0 \left(\cos \beta \cos \chi \cos \omega t - \sin \beta \sin \chi \sin \omega t \right)$ $E_y = \mathcal{E}_0 \left(\cos \beta \sin \chi \cos \omega t - \sin \beta \cos \chi \sin \omega t \right)$

matching to, e.g., $E_x = \mathcal{E}_1 \cos(\omega t - \phi_1)$:

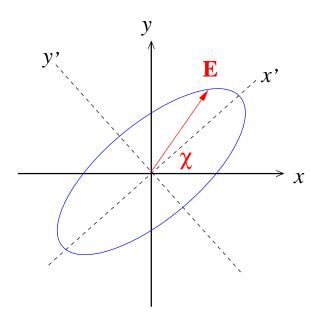
$$\mathcal{E}_1 \cos \phi_1 = \mathcal{E}_0 \cos \beta \cos \chi \tag{13}$$

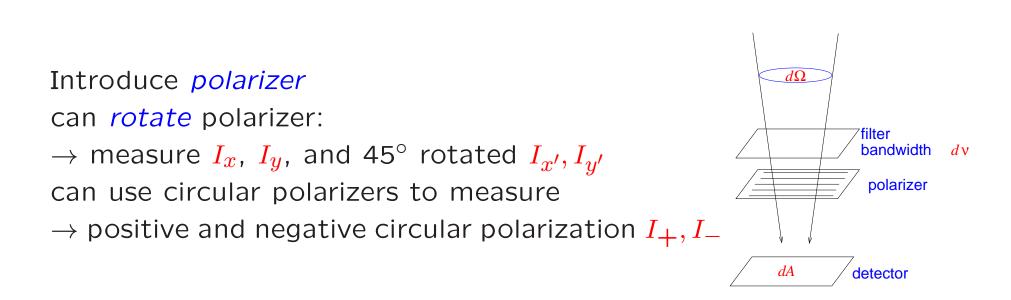
$$\mathcal{E}_1 \sin \phi_1 = \mathcal{E}_0 \sin \beta \sin \chi \tag{14}$$

$$\mathcal{E}_2 \cos \phi_2 = \mathcal{E}_0 \cos \beta \sin \chi \tag{15}$$

$$\mathcal{E}_2 \sin \phi_2 = -\mathcal{E}_0 \sin \beta \cos \chi \tag{16}$$

 $\overline{\omega}$ Q: how can we determine polarization by intensity measurements?





combine: Stokes parameters

$$I = I_x + I_y \tag{17}$$

$$Q = I_x - I_y \tag{18}$$

$$U = I_{x'} - I_{y'}$$
 (19)

$$V = I_{+} - I_{-}$$
 (20)

Q: what physically is each? can more than one of Q, U, V be $\stackrel{\checkmark}{=}$ nonzero? what does that correspond to?

Q: range of values for *Q*? *U*? *V*? are they all independent?

Stokes Parameters

for *monochromatic waves*, Stokes parameters related to $\mathcal{E}_1, \mathcal{E}_2, \phi_1, \phi_2$ and $\mathcal{E}_0, \beta, \chi$ bases:

$$I = \mathcal{E}_{1}^{2} + \mathcal{E}_{2}^{2} = \mathcal{E}_{0}^{2}$$
(21)

$$Q = \mathcal{E}_1^2 - \mathcal{E}_2^2 = \mathcal{E}_0^2 \cos 2\beta \cos 2\chi$$
(22)

$$U = 2\mathcal{E}_1 \mathcal{E}_2 \cos(\phi_1 - \phi_2) = \mathcal{E}_0^2 \cos 2\beta \sin 2\chi \qquad (23)$$

$$V = 2\mathcal{E}_1 \mathcal{E}_2 \sin(\phi_1 - \phi_2) = \mathcal{E}_0^2 \sin 2\beta$$
(24)

and thus

15

$$\mathcal{E}_0 = \sqrt{I} \tag{25}$$

$$\sin 2\beta = V/I \tag{26}$$

$$\tan 2\chi = U/Q \tag{27}$$

since wave has 3 independent parameters, Stokes parameters must be *related*

$$I^2 = Q^2 + U^2 + V^2 \tag{28}$$

Quasi-Monochromatic Waves

natural light generally not a pure monochromatic wave with a single, definite, complete state of polarization

rather: a *superposition* of components with many polarizations

consider wave with *slowly varying* amplitudes and phases

 $E_1(t) = \mathcal{E}_1(t) \ e^{i\phi_1(t)}$; $E_2(t) = \mathcal{E}_2(t) \ e^{i\phi_2(t)}$ (29)

"slow": wave looks completely polarized on timescalse ω^{-1} but amplitudes and phases drift over intervals $\Delta t \gg \omega^{-1}$ \rightarrow polarization changes

but also wave is *no longer monochromatic* frequency spread: "bandwidth" $\Delta \omega \sim 1/\Delta t \ll \omega$ \rightarrow quasi-monochromatic wave

16

Q: effect on Stokes?

Stokes Parameters for Quasi-Monochromatic Light

real measurements represent averages over timescales during which polarization can change

Stokes parameters become averages

$$I = \langle E_1 E_1^* \rangle + \langle E_2 E_2^* \rangle = \langle \mathcal{E}_1^2 + \mathcal{E}_2^2 \rangle$$
(30)

$$Q = \langle E_1 E_1^* \rangle - \langle E_2 E_2^* \rangle = \langle \mathcal{E}_1^2 - \mathcal{E}_2^2 \rangle$$
(31)

$$U = \langle E_1 E_2^* \rangle + \langle E_2 E_1^* \rangle = 2 \langle \mathcal{E}_1 \mathcal{E}_2 \cos(\phi_1 - \phi_2) \rangle$$
(32)

$$V = -i\left(\langle E_1 E_2^* \rangle - \langle E_2 E_1^* \rangle\right) = 2\langle \mathcal{E}_1 \mathcal{E}_2 \sin(\phi_1 - \phi_2)\rangle \quad (33)$$

but for quasi-monochromatic waves

$$I^2 \ge Q^2 + U^2 + V^2 \tag{34}$$

- quasi-monochromatic polarization is still in general *elliptical*
 - but drifts can reduce degree of polarization

$$I^2 \ge Q^2 + U^2 + V^2 \tag{35}$$

- maximum polarization when equality holds: *completely elliptically polarized*
- minimum when Q = U = V = 0: *unpolarized*
- arbitrary wave is *partially polarized*

useful to define *polarized* intensity

$$I_{\rm pol} = Q^2 + U^2 + V^2 \tag{36}$$

and since $I_{pol} \leq I$, define fractional degree of polarization

$$\Pi \equiv \frac{I_{\text{pol}}}{I} = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}$$
(37)

18

note: can always decompose Stokes parameters

$$\begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} I - I_{\text{pol}} \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} I_{\text{pol}} \\ Q \\ U \\ V \end{pmatrix}$$
(38)

sum of unpolarized and polarized components

Superposition and Stokes

consider composite wave that is superposition of many independent waves

electric field components are given by superposition

$$E_1 = \sum_k E_1^{(k)}$$
; $E_2 = \sum_k E_1^{(k)}$ (39)

each term k of which has different phase

PS3: phases specified, can calculate sum explicitly

but generally, phases are random

so field products average out phases from different waves

$$\langle E_i E_j^* \rangle = \sum_k \sum_{\ell} \langle E_i^{(k)} E_j^{(\ell)*} \rangle = \sum_k \langle E_i^{(k)} E_i^{(k)*} \rangle$$
(40)

but due to this averaging, *Stokes parameters are additive*

$$I = \sum_{k} I^{(k)} \tag{41}$$

$$Q = \sum_{k} Q^{(k)} \tag{42}$$

$$U = \sum_{k}^{n} U^{(k)} \tag{43}$$

$$V = \sum_{k} V^{(k)} \tag{44}$$