
Astro 501: Radiative Processes

Lecture 20

March 4, 2013

Announcements:

• Problem Set 6 available, due Friday 5pm

• Midterm Exam: grading elves hard at work

• free advice: you’ll be glad if you don’t miss class Wednesday

Before exam: began synchrotron

Q: what is cyclotron radiation? synchrotron radiation?

Q: characteristic scales?
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synchrotron radiation: relativistic charged particle

in uniform magnetic field

moves in circle with gyroradius

rg =
mcγv⊥

qB
=

cp⊥
qB

≃ 10−6 pc

(

cp⊥
1 GeV

) (

1 µGauss

B

)

(1)

non-relativistic gyrofrequency

νg =
ωg

2π
=

eB

2πγmc
= 2.8Hz γ−1

(

B

1 µGauss

)

(

me

m

)

(2)

gyrofrequency for mildly relativistic electrons:

cyclotron frequency νg ∼ few Hz

full relativistic frequency

ωB =
ωg

γ
=

qB

γmc
(3)
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Synchrotron Power

Lorentz-invariant power emitted from accelerated charge is

P =
2

3

q2

c3
γ4 (a2

⊥ + γ2a2
‖) (4)

for our case of circular motion: a‖ = 0,and

a⊥ = ωBv⊥ , so

P =
2

3

q2

c3
γ4 q2B2

γ2m2c2
=

2

3
r20 c γ2β2

⊥B2 (5)

but electron distribution is isotropic

so must average over distribution of pitch angle v̂ · B̂ = cosα

〈

β2
⊥
〉

=
β2

4π

∫

sin2 α dΩ =
2

3
β2 (6)
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total synchrotron power from isotropic electrons

P =

(

2

3

)2

r20 c γ2βB2 =
4

3
σT c β2γ2 uB (7)

where σT = 8πr20/3 and uB = B2/8π

another awesome astrophysical example: radio galaxies

Q: what’s that?

www: radio images of Cygnus A, Centaurus A

Q: how to find the spectrum of synchrotron radiation?

Q: why is it non-trivial? hint–think of relativistic circular motion
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Spectrum of Synchrotron Radiation: Order of Magnitude

key issue:

radiation from a relativistic accelerated particle is beamed

into forward cone of opening angle θbeam ∼ 1/γ

K’
K

γ

so observer receives pulses or “flashes” of radiation

spread over narrow timescale ≪ 2π/ωB

sharply peaked signal in time domain

⇒ broad signal in frequency domain
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consider relativistic charge moving in circle of radius a

a

2
1

∆θ

observer only sees emission over angular range

∆θ ≃ 2θbeam ≃ 2

γ
(8)

representing a path length

∆s = a ∆θ =
2a

γ
(9)
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gyroradius is a = v/ωB sinα, so

∆s ≃ 2v

γωB sinα
(10)

if the particle passes point 1 at t1 and point 2 at t2
∆s = v(t2 − t1), and

∆t = t2 − t1 ≃ 2

γωB sinα
(11)

what is arrival time of radiation?

note that point 2 is closer than point 1 by ≈ ∆s

∆tarr = tarr2 − tarr1 = ∆t − ∆s

c

= ∆t

(

1 − v

c

)

=
2

γωB sinα

(

1 − v

c

)

a

2
1

∆θ
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radiation arrive time duration

∆tarr =
2

γωB sinα

(

1 − v

c

)

(12)

but note that 1 − v/c ≈ 1/2γ2 for relativistic motion Q:why?

and thus radiation arrives in pulse of duration

∆tarr ≈ 1

γ3ωB sinα
(13)

shorter than ω−1
B by factor γ3!

define critical frequency

ωc ≡ 3

2
γ3ωB sinα =

3

2
γ2 qB sinα

mc
=

3

2
γ2 ωg sinα (14)

νc =
ωc

2π
=

3

4π
γ3ωB sinα (15)

Q: will radiation spectrum cut off above or below ωc?
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critical frequency

νc =
3

4π
γ3ωB sinα ∼ 1

∆tarr
(16)

Fourier transform of pulse ∆tarr broad up to νc

and should cut off above this

numerically:

νc = 25 MHz

(

Ee

1 GeV

)2
(

B

1 µGauss

)

sinα (17)

Q: lessons? irony?
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critical = characteristic frequency νc ∼ 25 MHz (Ee/1 GeV)2

typical cosmic-ray electrons emit in the observable radio

→ high-energy electrons can emit low-frequency radiation!

expect synchrotron power of form P(ω) ∼ P/ωc F(ω/ωc)

with dimensionless function F(x)

• should be peaked at x ∼ 1, then drop sharply

• can only be gotten from an honest calculation!

note: P ∝ γ2 but ωc ∝ γ2 → P/ωc indep of γ
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for a particle with a fixed v and γ,

conventional to define synchrotron spectrum as

dP

dω
= P(ω) =

√
3

2π

q3B sinα

mc2
F

(

ω

ωc

)

(18)

with ωc ∝ γ2

where the synchrotron function (derived in RL) is

F(x) = x
∫ ∞

x
K5/3(t) dt −→















4π√
3Γ(1/3)

(

x
2

)1/3
x ≪ 1

(

π
2

)1/2
e−xx1/2 x ≫ 1

(19)

with K5/3(x) the modified Bessel function of order 5/3

→ sharply peaked at ωmax = xmaxωc = 0.29ωc

www: plot of synchrotron function

Q: so is this the spectrum we would see for real CR es?
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for a single electron γ

emission spectrum is synchrotron function F(ω/ωc)

sharply peaked near ωc ∝ ωgγ2

but the population of cosmic-ray electrons

has a spectrum of energies and thus of γ

resulting synchrotron spectrum is

• superposition of peaks ∝ γ2,

• weighted by electron energy spectrum

Q: what if CRs had two energies? N energies?

Q: what does the real spectrum look like?

Q: what’s the synchrotron spectral shape for the ensemble of all

electron energies?
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recall: cosmic-ray electron spectrum well-fit by power law

so number of particles with energy in (E, E + dE) is

N(E) dE = C E−p dE (20)

and so

N(γ) dγ = C′ γ−p dγ (21)

note that for a single electron v and γ

P(ω) ∝ F(ω/ωc) and ωc = ωgγ2

so integrating over full CR spectrum means

〈P(ω)〉 =

∫

P(ω) N(γ) dγ (22)

= C′
∫

P(ω) γ−p dγ (23)

∝
∫

F

(

ω

ωgγ2

)

γ−p dγ (24)

Q: strategy?
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〈P(ω)〉 ∝
∫

F

(

ω

ωgγ2

)

γ−p dγ (25)

change integration variable to x = ω/ωc = γ−2ω/ωg

→ γ = (ωx/ωg)−1/2, and dγ = −(ω/ωg)−1/2x−3/2dx

〈P(ω)〉 ∝
(

ω

ωg

)−(p−1)/2 ∫

F(x) x(p−3)/2 dx (26)

and so

〈P(ω)〉 ∝ ω−(p−1)/2 = ω−s (27)

with spectral index s = (p − 1)/2

even though each electron energy → peaked emission

average over power-law electron distribution

→ power-law synchrotron emission
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full expression for power-law electron spectrum

of the form dN/dγ = Cγ−p

4πjtot(ω) =

√
3q3CB sinα

2(p + 1)πmc2
Γ

(

p

4
+

9

12

)

Γ

(

p

4
− 1

12

)

(

mcω

3qB sinα

)−(p−1)/2

(28)

with Γ(x) the gamma function, with Γ(x + 1) = x Γ(x)

Q: overall dependence on B? does this make sense?

Q: expected spectral index?

Q: do you expect the signal to be polarized? how?
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