Astro 501: Radiative Processes Lecture 24 March 13, 2013

Announcements:

• Problem Set 7 due Friday

Last time: inverse Compton power and spectra

- *Q: family resemblance with synchrotron?*
- *Q: applications?*
- Q: assumptions we made?

net inverse Compton power per electron, when done carefully:

$$P_{\text{Compt}} = \frac{4}{3}\sigma_{\text{T}} \ c \ \gamma^2 \ \beta^2 \ u_{\text{ph}} \tag{1}$$

formally identical to synchrotron power, with

$$\frac{P_{\text{synch}}}{P_{\text{Compt}}} = \frac{u_B}{u_{\text{ph}}}$$
(2)
for any electron velocity as long as $\gamma \epsilon \ll m_e c^2$

IC spectrum for *power-law electron energy distribution*

$$j(\epsilon_1;\epsilon) \sim \sigma_{\mathsf{T}} \ c \ C \ \epsilon_1^{-(p-1)/2} \ \epsilon^{(p-1)/2} \ \frac{du_{\mathsf{ph}}}{d\epsilon}(\epsilon)$$
 (3)

also close formal similarities with synchrotron

 $^{\sim}$ Q: what changes (and not) for non-relativistic electrons?

Inverse Compton: Non-Relativistic Electrons

if electrons are nonrelativistic but still on average more energetic than the photons we have $\beta = v/c \ll 1$ and $\gamma \approx 1 + \beta^2/2 + \cdots$, so that

$$P_{\text{Compt}} = \frac{4}{3}\sigma_{\text{T}} \ c \ \gamma^2 \ \beta^2 \ u_{\text{ph}} \approx \frac{4}{3}\sigma_{\text{T}} \ c \ \beta^2 \ u_{\text{ph}} \ + \ \vartheta(\beta^4) \tag{4}$$

if electrons has a **thermal velocity distribution** at T_e then velocities have Maxwell-Boltzmann distribution $e^{-v^2/2v_T^2v^2} dv$ with $v_T^2 = kT_e/m_e$, and so averaging, we get

$$\left\langle v^2 \right\rangle = 3v_T^2 = 3\frac{kT_e}{m_e} \tag{5}$$

and thus

$$\left\langle P_{\mathsf{Compt}} \right\rangle = 4\sigma_{\mathsf{T}} \ c \ \frac{kT_e}{m_e c^2} \ u_{\mathsf{ph}}$$
 (6)

ω

Sunyaev-Zel'dovich Effect

The Cosmic Microwave Background

Spectrum

best data: FIRAS instrument on

Cosmic Background Explorer (COBE)

Fixsen et al (1996):

- www: $T_{antenna}$ plot consistent with purely thermal
- present all-sky temperature

$$T_0 = 2.725 \pm 0.004 \text{ K} \tag{7}$$

thus, the CMB has, within our ability to measure precisely the Planck spectral form

$$I_{\nu} = B_{\nu}(T_0) \tag{8}$$

σ

Q: what does this imply?

CMB has Planck (blackbody) form $I_{\nu} = B_{\nu}(T_0)$ recall: a blackbody spectrum arises from

- a *thermal emitter* having source function $S_{\nu} = B_{\nu}$
- that is also *optically thick*

thus we conclude: sometime in the past

- cosmic matter and radiation were *in thermal equilibrium*
- and the Universe was *opaque*

but the *present* universe must be *transparent* to the CMB *Q: why is this? Q: what does this imply about epoch probed by CMB?*

The CMB Implies a Dense Past

the fact that the CMB is a *background* to low-z objects \rightarrow late-time U. is *transparent* to CMB

thus the CMB implies that the Universe is *evolving* and in the past was much *denser* so that equilibrium could be established

thus: the CMB probes exactly the epoch i.e., the last time U. was *opaque* to its thermal photons

CMB created by (and gives info about) an epoch of cosmic transition: $opaque \rightarrow transparent$

CMB as Cosmic "Baby Picture": Last Scattering Surface

```
but transparent/opaque transition is
controlled by photon scattering
e.g., CMB released at epoch of "last scattering" z<sub>IS</sub>
→ CMB sky map is a picture of the U. then:
"surface of last scattering"
```

as long as density of scattering particles is nonzero scattering rate > 0, mean free path and mean free time $\neq \infty$ naively would think scattering never stops!

Q: what's going on here?

 \odot

it is true that as long as scatterers exist *some* CMB photons will always be scattered

but: when mean free time > age of universe scattering ineffective, and a *typical* CMB photon will *no longer be scattered*: CMB photons "released" thereafter "free stream" across the Universe

in other words: CMB arises from cosmic "photosphere" where cosmic *optical depth* against scattering becomes small

```
More later on this:
we will find this occurs at z \sim 1000, t \sim 400,000 yrs
a long ago \rightarrow last scattering really far far away
```

The CMB Reprocessed: Hot Intracluster Gas

CMB is cosmic photosphere: "as far as the eye can see" CMB created long ago, comes from far away

- all other observable cosmic objects are in *foreground*
- CMB passes through all of the observable universe

Sunyaev & Zel'dovich:

what happens when CMB passes through hot gas Q: examples?

consider gas of electrons at temperature $T_e \gg T_{cmb}$ but where $kT_e \ll m_e c^2 Q$: how good an approximation is this?

 $_{\Box}$ Q: what's probability for scattering of CMB photon with ν ?

CMB Scattering by Intracluster Gas

mean free path is that for Thompson scattering: $\ell_{\nu}^{-1} = \alpha_{\nu} = n_e \sigma_{T}$ independent of frequency and thus optical depth is integral over cloud sightline

$$\tau_{\nu} = \int \alpha_{\nu} \, ds = \sigma_{\mathsf{T}} \int n_e \, ds \tag{9}$$

thus transmission probability is $e^{-\tau_{\nu}}$, and so absorption probability is $1 - e^{-\tau_{\nu}}$

but for galaxy clusters: $\tau < 10^{-3} \ll 1$, and so *absorption probability* is just τ *Q: implications?*

Q: effect of scattering if electrons cold, scattering is elastic?

 $\stackrel{\vdash}{\sim}$ Q: what if electrons are hot?

if electrons are hot, they transfer energy to CMB photons change temperature pattern, in frequency-dependent way

What is net change in energy? initial photon energy density is $u_0 = u_{cmb} = 4\pi B(T_{cmb})/c$ power transfer per electron is $P_{Compt} = 4(kT_e/m_ec^2)\sigma_T c u_0$, so

$$\frac{\partial u}{\partial t} = P_{\text{Compt}} \ n_e = 4 \frac{kT_e}{m_e c^2} \sigma_{\text{T}} c \ u_0 \ n_e \tag{10}$$

and thus net energy density change

$$\Delta u = 4\sigma_{\mathrm{T}} \ u_0 \int \frac{n_e \ kT_e}{m_e c^2} ds = 4 \frac{kT_e}{m_e c^2} \tau \ u_0 \tag{11}$$

Q: implications?

CMB energy density change through cluster

$$\Delta u = 4\sigma_{\rm T} \ u_0 \int \frac{n_e \ kT_e}{m_e c^2} ds = 4 \frac{kT_e}{m_e c^2} \tau \ u_0 \equiv 4y \ u_0 \qquad (12)$$

• dimensionless **Compton-***y* **parameter**

$$y \equiv \sigma_{\rm T} \int \frac{n_e \ kT_e}{m_e c^2} ds \simeq \tau \frac{kT_e}{m_e c^2} \simeq 3\tau \beta^2 \tag{13}$$

• note $n_e k T_e = P_e$ electron pressure $\rightarrow y$ set by line-of-sight pressure

fractional change in (integrated) energy density $\Delta u/u_0 = 4y$

- positive change \rightarrow (small) net heating of CMB photons
- since $u \propto I$, this also means

13

$$\frac{\Delta I_{\rm cmb}}{I_{\rm cmb}} = 4y \tag{14}$$

cluster generated net CMB "hotspot"

Q: expected frequency dependence?

SZ Effect: Frequency Dependence

on average, we expect photons to gain energy adding intensity at high ν , at the expense of low ν

but note that in isotropic electron population

- some scatterings will reduce energy
- while others will increase it

detailed derivation is involved:

- allow for ordinary and stimulated emission
- include effects of electron energy distribution
- allow for Compton shift in energy
- use Thomson (Klein-Nishina) angular distribution

full equation (Kompaneets and generalization)

⁴ describes *"diffusion" in energy (frequency) space* but key aspect comes from basic Compton property *Q: namely?*

The SZ Scattering Kernel

recall: Compton scattering conserves photon number thus useful to consider occupation number $f(\nu)$

- and number density $n(\nu) = n_{\nu} = dn/d\nu = 8\pi\nu^2/c^3 f(\nu)$
- where $I_{\nu} = c \ h\nu \ n_{\nu}/4\pi = 2 \ h\nu^3/c^2 \ f(\nu)$

conservation implies that effect of scattering of incident photons $f_0(\nu) \stackrel{\text{cmb}}{=} (e^{h\nu/kT_{\text{cmb}}} - 1)^{-1}$ can be cast in the *Green's function* form

$$n(\nu) = \int K(\nu, \nu_0) \ n_0(\nu_0) \ d\nu_0 \tag{15}$$

Q: what does $K(\nu, \nu_0)$ represent physically? Q: what does photon conservation require? Q: what is K if we turn scattering off?

ц Ц

the *scattering kernel* is

$$n(\nu) = \int K(\nu, \nu_0) \ n_0(\nu_0) \ d\nu_0 \tag{16}$$

physically: gives the *probability* that a photon observed at ν had frequency ν_0

photon conservation:

number of scattered photons $\int n(\nu) d\nu$ must be equal to initial number $\int n_0(\nu_0) d\nu$ requires $\int K(\nu, \nu_0) d\nu = 1$

if no scattering: must have $n(\nu) = n(\nu_0)$ and so $K(\nu, \nu_0) \rightarrow \delta(\nu - \nu_0)$ note: has right integral property

16

Q: main SZ frequency shift effect at low ν ? high ν ?

recall electron rest-frame Compton formula

$$\nu' = \frac{\nu'_0}{1 - (h\nu'_0/m_e c^2)(1 - \cos\theta)} \approx \left[1 - \frac{h\nu'_0}{m_e c^2}(1 - \cos\theta)\right]\nu' \quad (17)$$

at low frequencies $h\nu'_0 \ll m_e c^2$: Compton frequency shift tiny: $\nu' \approx \nu'_0$ but scattering off moving electrons gives *Doppler* shifts

Doppler: $\nu'_0 = \gamma (1 - \beta \cos \theta) \nu_0$ initial electron distribution is isotropic, so at fixed γ

$$\left\langle \nu_{0}^{\prime} \right\rangle = \gamma \left(1 - \beta \left\langle \cos \theta \right\rangle \right) \nu_{0} = \gamma \nu_{0} \approx \left(1 + \frac{v^{2}}{2c^{2}} \right) \nu_{0}$$
 (18)

- first order effect averages to zero
- but *second order* effect survives!
- boosting back to lab frame

$$\nu \rangle \approx \gamma^2 \nu_0 \approx \left(1 + \frac{v^2}{c^2}\right) \nu_0$$
(19)

17

for low frequencies: $\nu \approx (1 + \beta^2)\nu_0$

thus observed frequency ν arises from frequency $\nu_0 \approx (1-\beta^2)\nu$

simpleminded approximation:

$$K(\nu, \nu_0) = (1 - \tau) K_{\text{unscattered}}(\nu, \nu_0) + \tau K_{\text{scattered}}(\nu, \nu_0) = (1 - \tau) \delta(\nu_0 - \nu) + \tau \delta \left[\nu_0 - (1 - \beta^2)\nu\right]$$

thus we have

$$n(\nu) = \int K(\nu, \nu_0) \ n_0(\nu_0) \ d\nu_0$$
 (20)

$$= (1 - \tau) n_0(\nu) + \tau n_0 \left[(1 - \beta^2) \nu \right]$$
 (21)

 $_{tot}$ Q: and so?

SZ: Low Frequencies

our low-frequency approximation gives

$$n(\nu) = (1 - \tau) \ n_0(\nu) + \tau \ n_0 \left[(1 - \beta^2) \nu \right]$$
(22)

and so the change at low frequency ν is

$$\Delta n(\nu) = n(\nu) - n_0(\nu) = -\tau \left\{ n_0(\nu) - n_0 \left[(1 - \beta^2) \nu \right] \right\}$$
(23)

but $\beta^2 \ll 1$, so expand

$$\Delta n(\nu) \approx -\tau \ \Delta \nu \ \partial_{\nu} n_0(\nu) = -\tau \beta^2 \nu \ \partial_{\nu} n_0(\nu)$$
(24)

using the Planck form for n_0 , and with $\tau\beta^2 = 2y$, we have

$$\Delta n(\nu) = -2y \ n_0(\nu) \ \left(2 - \frac{h\nu/kT_e}{e^{h\nu/kT_e} - 1}\right) \approx -2y \ n_0(\nu)$$
(25)

where the last expression uses $h\nu/kT_e \ll 1$ *Q: implications?* at low frequencies $h\nu \ll kT_e$, we hve

$$\frac{\Delta n(\nu)}{n_0(\nu)} = \frac{\Delta I_{\nu}}{I_{\nu}^0} \approx -2y \tag{26}$$

- frequency-independent fractional decrease in intensity
- proportional to Compton y

physically reasonable? yes!

these wimpy photons are promoted to higher frequencies

Q: what about the high-frequency limit $h\nu \gg kT_e \sim m_e c^2 \beta^2$?