
Astro 501: Radiative Processes

Lecture 24

March 13, 2013

Announcements:

• Problem Set 7 due Friday

Last time: inverse Compton power and spectra

Q: family resemblance with synchrotron?

Q: applications?

Q: assumptions we made?
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net inverse Compton power per electron, when done carefully:

PCompt =
4

3
σT c γ2 β2 uph (1)

formally identical to synchrotron power, with

Psynch

PCompt
=

uB
uph

(2)

for any electron velocity as long as γǫ ≪ mec2

IC spectrum for power-law electron energy distribution

j(ǫ1; ǫ) ∼ σT c C ǫ
−(p−1)/2
1 ǫ(p−1)/2 duph

dǫ
(ǫ) (3)

also close formal similarities with synchrotron

Q: what changes (and not) for non-relativistic electrons?
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Inverse Compton: Non-Relativistic Electrons

if electrons are nonrelativistic

but still on average more energetic than the photons

we have β = v/c ≪ 1

and γ ≈ 1 + β2/2 + · · ·, so that

PCompt =
4

3
σT c γ2 β2 uph ≈

4

3
σT c β2 uph + ϑ(β4) (4)

if electrons has a thermal velocity distribution at Te
then velocities have Maxwell-Boltzmann distribution e−v2/2v2T v2 dv

with v2T = kTe/me, and so averaging, we get

〈

v2
〉

= 3v2T = 3
kTe

me
(5)

and thus
〈

PCompt

〉

= 4σT c
kTe

mec2
uph (6)
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Sunyaev-Zel’dovich Effect
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The Cosmic Microwave Background

Spectrum

best data: FIRAS instrument on

Cosmic Background Explorer (COBE)

Fixsen et al (1996):

• www: Tantenna plot – consistent with purely thermal

• present all-sky temperature

T0 = 2.725± 0.004 K (7)

thus, the CMB has, within our ability to measure

precisely the Planck spectral form

Iν = Bν(T0) (8)

Q: what does this imply?
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CMB has Planck (blackbody) form Iν = Bν(T0)

recall: a blackbody spectrum arises from

• a thermal emitter having source function Sν = Bν

• that is also optically thick

thus we conclude: sometime in the past

• cosmic matter and radiation were in thermal equilibrium

• and the Universe was opaque

but the present universe

must be transparent to the CMB

Q: why is this?

Q: what does this imply about epoch probed by CMB?
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The CMB Implies a Dense Past

the fact that the CMB is a background

to low-z objects → late-time U. is transparent to CMB

thus the CMB implies that the Universe is evolving

and in the past was much denser

so that equilibrium could be established

thus: the CMB probes exactly the epoch

i.e., the last time U. was opaque to its thermal photons

CMB created by (and gives info about)

an epoch of cosmic transition: opaque → transparent7



CMB as Cosmic “Baby Picture”: Last Scattering Surface

but transparent/opaque transition is

controlled by photon scattering

e.g., CMB released at epoch of “last scattering” zls
→ CMB sky map is a picture of the U. then:

“surface of last scattering’

as long as density of scattering particles is nonzero

scattering rate > 0, mean free path and mean free time 6= ∞

naively would think scattering never stops!

Q: what’s going on here?
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it is true that as long as scatterers exist

some CMB photons will always be scattered

but: when mean free time > age of universe

scattering ineffective, and a typical CMB photon

will no longer be scattered: CMB photons “released”

thereafter “free stream” across the Universe

in other words: CMB arises from cosmic “photosphere”

where cosmic optical depth against scattering becomes small

More later on this:

we will find this occurs at z ∼ 1000, t ∼ 400,000 yrs

a long ago → last scattering really far far away9



The CMB Reprocessed: Hot Intracluster Gas

CMB is cosmic photosphere: “as far as the eye can see”

CMB created long ago, comes from far away

• all other observable cosmic objects are in foreground

• CMB passes through all of the observable universe

Sunyaev & Zel’dovich:

what happens when CMB passes through hot gas Q: examples?

consider gas of electrons at temperature Te ≫ Tcmb

but where kTe ≪ mec2 Q: how good an approximation is this?

Q: what’s probability for scattering of CMB photon with ν?1
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CMB Scattering by Intracluster Gas

mean free path is that for Thompson scattering:

ℓ−1
ν = αν = neσT independent of frequency

and thus optical depth is integral over cloud sightline

τν =

∫

αν ds = σT

∫

ne ds (9)

thus transmission probability is e−τν, and so

absorption probability is 1− e−τν

but for galaxy clusters: τ < 10−3 ≪ 1,

and so absorption probability is just τ

Q: implications?

Q: effect of scattering if electrons cold, scattering is elastic?

Q: what if electrons are hot?

1
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if electrons are hot, they transfer energy to CMB photons

change temperature pattern, in frequency-dependent way

What is net change in energy?

initial photon energy density is u0 = ucmb = 4πB(Tcmb)/c

power transfer per electron is PCompt = 4(kTe/mec2)σTc u0, so

∂u

∂t
= PCompt ne = 4

kTe

mec2
σTc u0 ne (10)

and thus net energy density change

∆u = 4σT u0

∫

ne kTe

mec2
ds = 4

kTe

mec2
τ u0 (11)

Q: implications?
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CMB energy density change through cluster

∆u = 4σT u0

∫

ne kTe

mec2
ds = 4

kTe

mec2
τ u0 ≡ 4y u0 (12)

• dimensionless Compton-y parameter

y ≡ σT

∫

ne kTe

mec2
ds ≃ τ

kTe

mec2
≃ 3τβ2 (13)

• note nekTe = Pe electron pressure

→ y set by line-of-sight pressure

fractional change in (integrated) energy density ∆u/u0 = 4y

• positive change → (small) net heating of CMB photons

• since u ∝ I, this also means

∆Icmb

Icmb
= 4y (14)

cluster generated net CMB “hotspot”

Q: expected frequency dependence?
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SZ Effect: Frequency Dependence

on average, we expect photons to gain energy

adding intensity at high ν, at the expense of low ν

but note that in isotropic electron population

• some scatterings will reduce energy

• while others will increase it

detailed derivation is involved:

• allow for ordinary and stimulated emission

• include effects of electron energy distribution

• allow for Compton shift in energy

• use Thomson (Klein-Nishina) angular distribution

full equation (Kompaneets and generalization)

describes “diffusion” in energy (frequency) space

but key aspect comes from basic Compton property Q: namely?
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The SZ Scattering Kernel

recall: Compton scattering conserves photon number

thus useful to consider occupation number f(ν)

• and number density n(ν) = nν = dn/dν = 8πν2/c3 f(ν)

• where Iν = c hν nν/4π = 2 hν3/c2 f(ν)

conservation implies that effect of scattering

of incident photons f0(ν)
cmb
= (ehν/kTcmb − 1)−1

can be cast in the Green’s function form

n(ν) =

∫

K(ν, ν0) n0(ν0) dν0 (15)

Q: what does K(ν, ν0) represent physically?

Q: what does photon conservation require?

Q: what is K if we turn scattering off?

1
5



the scattering kernel is

n(ν) =
∫

K(ν, ν0) n0(ν0) dν0 (16)

physically: gives the probability that

a photon observed at ν had frequency ν0

photon conservation:

number of scattered photons
∫

n(ν) dν

must be equal to initial number
∫

n0(ν0) dν

requires
∫

K(ν, ν0) dν = 1

if no scattering: must have n(ν) = n(ν0)

and so K(ν, ν0) → δ(ν − ν0)

note: has right integral property

Q: main SZ frequency shift effect at low ν? high ν?
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recall electron rest-frame Compton formula

ν′ =
ν′0

1− (hν′0/mec2)(1− cos θ)
≈

[

1−
hν′0
mec2

(1− cos θ)

]

ν′ (17)

at low frequencies hν′0 ≪ mec2:
Compton frequency shift tiny: ν′ ≈ ν′0
but scattering off moving electrons gives Doppler shifts

Doppler: ν′0 = γ(1− β cos θ)ν0
initial electron distribution is isotropic, so at fixed γ

〈

ν′0

〉

= γ (1− β 〈cos θ〉) ν0 = γν0 ≈

(

1+
v2

2c2

)

ν0 (18)

• first order effect averages to zero

• but second order effect survives!

• boosting back to lab frame

〈ν〉 ≈ γ2ν0 ≈

(

1 +
v2

c2

)

ν0 (19)
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for low frequencies: ν ≈ (1 + β2)ν0

thus observed frequency ν arises from

frequency ν0 ≈ (1− β2)ν

simpleminded approximation:

K(ν, ν0) = (1− τ) Kunscattered(ν, ν0) + τ Kscattered(ν, ν0)

= (1− τ) δ(ν0 − ν) + τ δ
[

ν0 − (1− β2)ν
]

thus we have

n(ν) =
∫

K(ν, ν0) n0(ν0) dν0 (20)

= (1− τ) n0(ν) + τ n0

[

(1− β2)ν
]

(21)

Q: and so?1
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SZ: Low Frequencies

our low-frequency approximation gives

n(ν) = (1− τ) n0(ν) + τ n0

[

(1− β2)ν
]

(22)

and so the change at low frequency ν is

∆n(ν) = n(ν)− n0(ν) = −τ
{

n0(ν)− n0

[

(1− β2)ν
]}

(23)

but β2 ≪ 1, so expand

∆n(ν) ≈ −τ ∆ν ∂νn0(ν) = −τβ2ν ∂νn0(ν) (24)

using the Planck form for n0, and with τβ2 = 2y, we have

∆n(ν) = −2y n0(ν)

(

2−
hν/kTe

ehν/kTe − 1

)

≈ −2y n0(ν) (25)

where the last expression uses hν/kTe ≪ 1

Q: implications?
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at low frequencies hν ≪ kTe, we hve

∆n(ν)

n0(ν)
=

∆Iν

I0ν
≈ −2y (26)

• frequency-independent fractional decrease in intensity

• proportional to Compton y

physically reasonable? yes!

these wimpy photons are promoted to higher frequencies

Q: what about the high-frequency limit hν ≫ kTe ∼ mec2β2?
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