Astro 501: Radiative Processes Lecture 30 April 5, 2013

Announcements:

- Problem Set 9 due 5pm next Monday
- ICES to be available online please!

Last time: thermodynamics of atomic states

Q: ratio of 2p to 1s states in hydrogen at T?

Q: what is hydrogen ionization fraction x_e ?

Q: in thermodynamic equilibrium, what parameters determine x_e ?

Н

ratio of 2p to 1s in hydrogen:

$$\frac{n(2p)}{n(1s)} = \frac{g(2p)}{g(1s)} e^{-[E(2p) - E(1s)]/kT} = 3e^{-3B/4kT}$$
(1)

define ionization fraction

Ν

$$x_e = \frac{n_e}{n_{\text{tot}}} 4 \tag{2}$$

with total electron number density $n_{tot} = n_e + n_H$ using $n_e = n_p$ (charge neutrality): Saha equation

$$\frac{x_e^2}{1-x_e} \approx \frac{2(2\pi m_e kT/h^2)^{3/2}}{n_{\text{tot}}} e^{-B_{\text{H}}/kT} = \frac{n_{\text{Q},e}}{n_{\text{tot}}} e^{-B_{\text{H}}/kT}$$
(3) ionization depends on T but also particle density n_{tot}

Radiative Transitions

Radiative Transitions

so far: thermal populations of bound states now: *transitions* between states leading to emission/absorption

we want a qualitative and quantitative understanding

qualitatively:

- what is the basic physics?
- selection rules: which transition are allowed?

quantitatively:

P Q: what do we want to know?

quantitatively:

we want to describe the *strength* of transitions in particular, the usual radiation transfer quantities

- emission coefficient $j_{
 u}$
- absorption coefficient α_{ν}

these are closely related to Einstein coefficients

- A_{if} spontaneous emission rate per atom for $i \to f$
- B_{if} stimulated emission coefficient
- B_{fi} true absorption coefficient

recall: we found that, for $h\nu_{if} = E_i - E_f$

$$j_{\nu} = \frac{h\nu_{if} A_{if}}{4\pi} n_i \phi(\nu) \tag{4}$$

$$\alpha_{\nu} = \frac{h\nu_{if}}{4\pi} \left(B_{fi}n_f - B_{if}n_i \right) \phi(\nu)$$
(5)

(6)

С

with $\phi(\nu)$ the *line profile* function

The Semiclassical Approach

Deriving the general Einstein A and B coefficient for transitions between two atomic states from first principles is a big job

we will take a "first-ish" principles approach sketch what goes into the final result

we will work in the semiclassical limit

- treat the atomic states quantum mechanically
- but treat the radiation classically

 \rightarrow i.e., in the limit of large photon occupation f \circ good for getting Einstein B, bad for $A \ Q$: why? Q: but what's the workaround if we know B? classical radiation \leftrightarrow large photon occupation f

absorption and stimulated emission: rate proportional to $\bar{J}_{\nu} = \int I_{\nu} d\Omega$

and recall $I_{\nu} = 2\nu^2/c^2 f$

 \rightarrow so rate $\propto \int f~d\Omega$ works even down to small f

spontaneous emission: involves single photons correct analysis demands quantum treatment of radiation field

but luckily Einstein says: $A_{if} = (2h\nu_{if}^3/c^2)B_{fi}$ so if we find *B*, then use this to get *A*

¬ thus: we will calculate *absorption*

So we will:

- treat atoms quantum mechanically, and
- treat radiation as a perturbation, in the form of an *external classical* EM field

Q: how do we describe formally the unperturbed system?

Q: how do we introduce the perturbation?

The Electromagnetic Hamiltonian

recall quantum mechanics: stationary atomic states $|n\rangle$ are governed by the time-independent Schrödinger equation

$$H_0 |n\rangle = E_n |n\rangle \tag{7}$$

in terms of wavefunctions $\psi_n(x) = \langle x | n \rangle$,

$$H_0 \ \psi_n = E_n \ \psi_n \tag{8}$$

with H_0 the Hamiltonian operator for the atom and includes the *e*-nucleus EM interactions and E_n is the energy of state n

add an external classical field with 4-potential (ϕ, \vec{A}) the relativistic Hamiltonian for an electron is

$$H = \sqrt{(c\vec{p} + e\vec{A})^2 + (m_e c^2)^2 - e\phi}$$
(9)

for experts: gives right equation of motion in Hamilton's eqs Q: limit of no field? non-relativistic limit?

9

The Relativistic Hamiltonian

full relativistic Hamiltonian for an electron

$$H = \sqrt{\left(c\vec{p} + e\vec{A}\right)^2 + (m_e c^2)^2} - e\phi$$
 (10)

non-relativistic limit: $cp \ll m_e c^2$

$$H = \frac{1}{2m_e} \left(\vec{p} + \frac{e\vec{A}}{c} \right)^2 - e\phi \qquad (11)$$

$$= \frac{p^2}{2m_e} + \frac{e}{m_e c} \vec{A} \cdot \vec{p} + \frac{e^2 A^2}{2m_e c^2} - e\phi$$
(12)

plus a constant term m_ec^2 which we ignore Q: why?

note: we have used the "Coulomb gauge" for the perturbation $\stackrel{_{\rm to}}{_{\rm to}}~\nabla\cdot\vec{A}=0=\phi$

we can write the non-relativistic Hamiltonian as

$$H = H_0 + H_1 + H_2 \tag{13}$$

where the *unperturbed atomic Hamiltonian* is H_0 , the perturbation *first order in* A is

$$H_1 = \frac{e}{m_e c} \vec{A} \cdot \vec{p} \tag{14}$$

and the perturbation second order in A is

$$H_2 = \frac{e^2 A^2}{2m_e c^2}$$
(15)

there is a beautiful physical interpretation of the terms:

- H_1 describes one-photon emission processes
- H_2 describes two-photon emission processes

11

Q: relative importance of the two terms?

order-of-magnitude estimate of the ratio of terms, in H atom:

$$\eta = \frac{H_1}{H_2} \sim \frac{epA/m_ec}{e^2 A^2/m_ec^2} \sim \frac{ev/c}{\alpha^2 a_0 A}$$
(16)

external electric field $E \sim 1/c \ partial_t A \sim \nu/c \ A$ and in H: $v/c \sim \alpha$, and $h\nu \sim e^2/a_0$ so $h\nu/c \sim \alpha/a_0$

$$\eta^2 \sim \frac{h\nu}{a_0^3 E^2} \tag{17}$$

but $E^2/h\nu \sim n_{\rm ph}$, the photon density in the external field

$$\eta^2 \sim \frac{1}{n_{\rm ph}a_0^3} \sim \left(\frac{10^{25} \text{ photons/cm}^3}{n_{\rm ph}}\right) \tag{18}$$

at the Sun's surface $n_{\rm ph}\sim 10^{12}/{\rm cm^3}$

lesson: $\eta \gg 1$ for (almost) all astro applications \rightarrow ignore the two-photon term H_2

The Transition Probability

we want the *probability* for transition $i \rightarrow f$ where the unperturbed wavefunctions satisfy $H_0 \ \psi_k = E_k \ \psi_k$ this probability is *time-dependent*

the perturbing field generates nonzero amplitude for states $n \neq i$ so write time-dependent wavefunction as

$$\psi(t) = \sum_{k} a_k(t) \ \psi_k \ e^{-iE_k t/\hbar}$$
(19)

 $Q: a_k(t)$ for system without perturbation? behavior with perturbation?

for at time-dependent potential, standard quantum mechanics gives

the probability P_{fi} to go from state $i \to f$

$$P_{fi} = w_{fi} t \tag{20}$$

with *t* the time the perturbation acts and the *transition probability per unit time*

$$w_{fi} = \frac{4\pi^2 |H(\omega_{fi})|^2}{\hbar^2 t}$$
(21)

where $H_{fi}(\omega) = (2\pi)^{-1} \int_0^t H_{fi}(t) e^{i\omega t'}$ with the matrix element $H_{fi} = \int \psi_f^* H_1 \psi_i d^3 x$ and where $\hbar \omega_{fi} = E_f - E_i$

14

if we have multiple atomic electrons, them perturbation is sum

$$H_1 = \frac{e}{m_e c} \sum_j \vec{A} \cdot \vec{p}_j = \frac{ie\hbar}{m_e c} \vec{A} \cdot \sum_j \nabla_j$$
(22)

let the perturbing field have:

- $\vec{A}(\vec{r},t) = \vec{A}(t) e^{i\vec{k}\cdot\vec{r}}$, with
- $\vec{A}(t') = 0$ outside of (0, t)

then the Fourier transform of the matrix element is

$$H_{fi} = \vec{A}_{fi}(\omega_{fi}) \cdot \frac{ie\hbar}{c} \langle f | e^{i\vec{k}\cdot\vec{r}} \sum_{j} \nabla_{j} | i \rangle$$
(23)

where $\langle f | e^{i\vec{k}\cdot\vec{r}} \sum_j \nabla_j | i \rangle = \sum_j \int \psi_f^* \nabla_j \psi_i d^3x$ is *time-independent*

write $\vec{A} = A$ e with unit polarization vector e:

$$w_{fi} = \frac{4\pi^2 e^2}{m_e c^2 t} \left| A(\omega_{fi}) \right|^2 \left| \langle f | e^{i\vec{k}\cdot\vec{r}} \mathbf{e} \cdot \sum_j \nabla_j | i \rangle \right|^2$$
(24)

in note that $w_{fi} \propto |A(\omega_{fi})|^2$; related to intensity

recall: *integrated* intensity is

$$I = \left\langle \vec{S} \cdot \vec{n} \right\rangle = \frac{c}{4\pi \ t} \int E^2(t) \ dt = \frac{c}{t} \int |E(\omega)|^2 \ dt \qquad (25)$$

to monochromatic intensity

$$J_{\omega} = \frac{c |E(\omega)|^2}{t}$$
(26)

and since $\vec{E} = -1/c \ \partial_t \vec{A} = -i\omega/c\vec{A}$

$$J_{\omega} = \frac{\omega^2}{c t} |A(\omega)|^2$$
(27)

and thus we see that $w_{fi} \propto |A(\omega)|^2$ implies $w_{fi} \propto J_{\omega}$, as expected for absorption!

also: what about
$$w_{if}$$
, for $f \to i$?

finally, for the transition probability per unit time for $i \rightarrow f$ we have

$$w_{fi} = \frac{4\pi^2 e^2}{m_e c^2} \frac{J(\omega_{fi})}{\omega_{fi}^2} \left| \langle f | e^{i\vec{k}\cdot\vec{r}} \mathbf{e} \cdot \sum_j \nabla_j | i \rangle \right|^2$$
(28)

about the probability for $f \rightarrow i$? the same except now $\langle i | e^{i\vec{k}\cdot\vec{r}} \mathbf{e} \cdot \sum_j \nabla_j | i \rangle$ but integrating by parts, can show

$$w_{if} = w_{fi} \tag{29}$$

principle of detailed balance