
Astro 501: Radiative Processes

Lecture 30

April 5, 2013

Announcements:

• Problem Set 9 due 5pm next Monday

• ICES to be available online – please!

Last time: thermodynamics of atomic states

Q: ratio of 2p to 1s states in hydrogen at T?

Q: what is hydrogen ionization fraction xe?

Q: in thermodynamic equilibrium, what parameters determine

xe?
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ratio of 2p to 1s in hydrogen:

n(2p)

n(1s)
=
g(2p)

g(1s)
e−[E(2p)−E(1s)]/kT = 3e−3B/4kT (1)

define ionization fraction

xe =
ne

ntot
4 (2)

with total electron number density ntot = ne+ nH
using ne = np (charge neutrality): Saha equation

x2e
1− xe

≈
2(2πmekT/h2)3/2

ntot
e−BH/kT =

nQ,e

ntot
e−BH/kT (3)

ionization depends on T but also particle density ntot
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Radiative Transitions

3



Radiative Transitions

so far: thermal populations of bound states

now: transitions between states

leading to emission/absorption

we want a qualitative and quantitative understanding

qualitatively:

• what is the basic physics?

• selection rules: which transition are allowed?

quantitatively:

Q: what do we want to know?4



quantitatively:

we want to describe the strength of transitions

in particular, the usual radiation transfer quantities

• emission coefficient jν
• absorption coefficient αν

these are closely related to Einstein coefficients

• Aif spontaneous emission rate per atom for i → f

• Bif stimulated emission coefficient

• Bfi true absorption coefficient

recall: we found that, for hνif = Ei − Ef

jν =
hνif Aif

4π
ni φ(ν) (4)

αν =
hνif

4π

(

Bfinf −Bifni
)

φ(ν) (5)

(6)

with φ(ν) the line profile function
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The Semiclassical Approach

Deriving the general Einstein A and B coefficient

for transitions between two atomic states

from first principles

is a big job

we will take a “first-ish” principles approach

sketch what goes into the final result

we will work in the semiclassical limit

• treat the atomic states quantum mechanically

• but treat the radiation classically

→ i.e., in the limit of large photon occupation f

good for getting Einstein B, bad for A Q: why?

Q: but what’s the workaround if we know B?
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classical radiation ↔ large photon occupation f

absorption and stimulated emission: rate proportional to J̄ν =
∫

Iν dΩ

and recall Iν = 2ν2/c2 f

→ so rate ∝
∫

f dΩ works even down to small f

spontaneous emission: involves single photons

correct analysis demands quantum treatment of radiation field

but luckily Einstein says: Aif = (2hν3if/c
2)Bfi

so if we find B, then use this to get A

thus: we will calculate absorption7



So we will:

• treat atoms quantum mechanically, and

• treat radiation as a perturbation, in the form of

an external classical EM field

Q: how do we describe formally the unperturbed system?

Q: how do we introduce the perturbation?
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The Electromagnetic Hamiltonian

recall quantum mechanics: stationary atomic states |n〉
are governed by the time-independent Schrödinger equation

H0 |n〉 = En |n〉 (7)

in terms of wavefunctions ψn(x) = 〈x|n〉 ,

H0 ψn = En ψn (8)

with H0 the Hamiltonian operator for the atom

and includes the e-nucleus EM interactions

and En is the energy of state n

add an external classical field with 4-potential (φ, ~A)

the relativistic Hamiltonian for an electron is

H =

√

(

c~p+ e ~A
)2

+ (mec
2)2 − eφ (9)

for experts: gives right equation of motion in Hamilton’s eqs

Q: limit of no field? non-relativistic limit?
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The Relativistic Hamiltonian

full relativistic Hamiltonian for an electron

H =

√

(

c~p+ e ~A
)2

+ (mec
2)2 − eφ (10)

non-relativistic limit: cp≪ mec2

H =
1

2me

(

~p+
e ~A

c

)2

− eφ (11)

=
p2

2me
+

e

mec
~A · ~p+

e2A2

2mec2
− eφ (12)

plus a constant term mec2 which we ignore Q: why?

note: we have used the “Coulomb gauge” for the perturbation

∇ · ~A = 0 = φ
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we can write the non-relativistic Hamiltonian as

H = H0 +H1 +H2 (13)

where the unperturbed atomic Hamiltonian is H0,

the perturbation first order in A is

H1 =
e

mec
~A · ~p (14)

and the perturbation second order in A is

H2 =
e2A2

2mec2
(15)

there is a beautiful physical interpretation of the terms:

• H1 describes one-photon emission processes

• H2 describes two-photon emission processes

Q: relative importance of the two terms?
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order-of-magnitude estimate of the ratio of terms, in H atom:

η =
H1

H2
∼

epA/mec

e2A2/mec2
∼

ev/c

α2a0A
(16)

external electric field E ∼ 1/c partialtA ∼ ν/c A

and in H: v/c ∼ α, and hν ∼ e2/a0 so hν/c ∼ α/a0

η2 ∼
hν

a30E
2

(17)

but E2/hν ∼ nph, the photon density in the external field

η2 ∼
1

npha
3
0

∼

(

1025 photons/cm3

nph

)

(18)

at the Sun’s surface nph ∼ 1012/cm3

lesson: η ≫ 1 for (almost) all astro applications

→ ignore the two-photon term H2
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The Transition Probability

we want the probability for transition i → f

where the unperturbed wavefunctions satisfy H0 ψk = Ek ψk this

probability is time-dependent

the perturbing field generates nonzero amplitude for states n 6= i

so write time-dependent wavefunction as

ψ(t) =
∑

k

ak(t) ψk e
−iEkt/h̄ (19)

Q: ak(t) for system without perturbation? behavior with pertur-

bation?
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for at time-dependent potential, standard quantum mechanics

gives

the probability Pfi to go from state i→ f

Pfi = wfi t (20)

with t the time the perturbation acts

and the transition probability per unit time

wfi =
4π2 |H(ωfi)|

2

h̄2 t
(21)

where Hfi(ω) = (2π)−1 ∫ t
0Hfi(t) e

iωt′

with the matrix element Hfi =
∫

ψ∗
f H1 ψi d

3x

and where h̄ωfi = Ef − Ei

if we have multiple atomic electrons, them perturbation is sum

H1 =
e

mec

∑

j

~A · ~pj =
ieh̄

mec
~A ·
∑

j

∇j (22)
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let the perturbing field have:

• ~A(~r, t) = ~A(t) ei
~k·~r, with

• ~A(t′) = 0 outside of (0, t)

then the Fourier transform of the matrix element is

Hfi = ~Afi(ωfi) ·
ieh̄

c
〈f | ei

~k·~r
∑

j

∇j|i〉 (23)

where 〈f | ei
~k·~r∑

j∇j|i〉 =
∑

j
∫

ψ∗
f ∇j ψi d

3x is time-independent

write ~A = A e with unit polarization vector e:

wfi =
4π2e2

mec2 t

∣

∣

∣A(ωfi)
∣

∣

∣

2

∣

∣

∣

∣

∣

∣

〈f |ei
~k·~r

e ·
∑

j

∇j|i〉

∣

∣

∣

∣

∣

∣

2

(24)

note that wfi ∝ |A(ωfi)|
2; related to intensity
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recall: integrated intensity is

I =
〈

~S · ~n
〉

=
c

4π t

∫

E2(t) dt =
c

t

∫

|E(ω)|2 dt (25)

to monochromatic intensity

Jω =
c |E(ω)|2

t
(26)

and since ~E = −1/c ∂t ~A = −iω/c ~A

Jω =
ω2

c t
|A(ω)|2 (27)

and thus we see that wfi ∝ |A(ω)|2

implies wfi ∝ Jω, as expected for absorption!

also: what about wif , for f → i?1
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finally, for the transition probability per unit time

for i → f we have

wfi =
4π2e2

mec2
J(ωfi)

ω2
fi

∣

∣

∣

∣

∣

∣

〈f |ei
~k·~r

e ·
∑

j

∇j|i〉

∣

∣

∣

∣

∣

∣

2

(28)

about the probability for f → i?

the same except now 〈i|ei
~k·~r

e ·
∑

j∇j|i〉

but integrating by parts, can show

wif = wfi (29)

principle of detailed balance
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