Astro 501: Radiative Processes Lecture 32 April 10, 2013

Announcements:

- Problem Set 10 due 5pm next Friday April 19
- no class meeting Monday or Wednesday time off for good behavior

Last time: the physics and astrophysics of line shapes

Q: why not a delta function? what about energy conservation?

Q: sources of broadening?

Q: lineshapes in astrophysical applications?

Linewidths

naïvely: in transition $u \to \ell$, energy conservation requires $h\nu = E_u - E_\ell \equiv h_{u\ell}$, so $\phi_{\text{naive}}(\nu) = \delta(\nu - \nu_{u\ell})$: zero width!

But real observed linewidths are nonzero, for several reasons

• intrinsic width

quantum effect, due to nonzero transition rate $\Gamma=1/ au$ and energy-time uncertainty principle ΔE $\Delta t \gtrsim \hbar/2$

• thermal broadening

thermal motion of absorbers \rightarrow Doppler shifts

• collisional broadening

absorber collisions add to transition probability

Collisional Linewidth

if particle densities are high, atomic collisions are rapid and can drive transitions $u\leftrightarrow\ell$

thus there is a nonzero collision rate $\Gamma_{\rm coll}$ per atom where $\Gamma_{\rm coll}=n~\sigma_{\rm coll}v$

heuristically: this decreases excited state lifetimes and thus adds to energy uncertainty

so total transition rate includes both Γ_{int} and Γ_{coll} : \to collisions add damping, which depends on photospheric density and temperature via Γ_{coll}

thus collisional broadening measures density and temperature thus also know as "pressure broadening"

Q: effect of collisions on lineshape?

recall: atomic transition $u \to \ell$ has

$$\sigma_{u\ell}(\nu) = \pi e^2 / m_e c \ f_{u\ell} \ \phi_{u\ell}(\nu) = B_{\text{classical}} \ f_{u\ell} \ \phi(\nu)$$
 (1)

without collisions, intrinsic profile shape that is Lorentzian

$$\phi_{u\ell}^{\text{intrinsic}}(\nu) = \frac{4\Gamma_{u\ell}}{16\pi^2(\nu - \nu_{u\ell})^2 + \Gamma_{u\ell}^2}$$

full width at half-maximum: $(\Delta \nu)_{\rm FWHM} = \Gamma_{u\ell}/2\pi$ set by intrinsic level de-excitation rate $\Gamma_{u\ell}$

With collisions: $\Gamma_{\text{coll}} = n \ \sigma_{\text{coll}} \ v$ still a Lorentzian profile, but with effective transition rate to

$$\frac{\Gamma_{u\ell}}{2} = \frac{\Gamma_{u\ell}^{\text{intrinsic}}}{2} + \Gamma_{\text{coll}} \tag{2}$$

 $^{ t 4}$ www: solar Hlpha line

Awesome Example: Classifying Stars

Q: how can spectra determine stellar (photosphere) T?

www: spectra of main sequence (dwarf) stars

Q: many lines are strongest in middle of sequency—why?

www: white dwarf spectrum

www: O star spectrum

Q: similar temperatures, why different?

Q: at fixed T, how can spectrum distinguish main sequence vs giant stars?

 $^{\circ}$ Q: which of the above requires distance to star?

Q: what stellar properties do require distance?

Awesome Example: Classifying Stars

to a good approximation, stellar spectra are:

- \bullet blackbody = Planck form, at photospheric T
- with lines (often many!) due to photospheric absorption

Star Type: *OBAFGKMLT*

a sequence in temperature; Sun is G5

"early types" hotter than Sun: OBAF

"late types" solar and cooler: GKMLT

main sequence spectra: lines very temperature sensitive Balmer H lines: weak \rightarrow strong \rightarrow weak for types O \rightarrow A \rightarrow M

- O stars T > 30,000 K: most H is ionized
- $^{\circ}$ A stars $T \sim 10,000$ K: most H neutral, but n=2 populated
 - M stars $T \sim 4000$ K: H neutral, tiny n = 2 population

Stellar Luminosity Class: I, II, III, IV, V

determined by shapes of strong lines at fixed spectral type i.e., at (nearly) fixed temperature

V: line wings broader than intrinsic damping width

I: no additional broadening

physically: damping wings sensitive to pressure broadening i.e., by collision rate $\Gamma_{\text{coll}} = n\sigma_{\text{coll}} v$ at fixed T, this corresponds to different density and pressure but hydrostatic equilibrium: $\nabla P = \rho \vec{g} = G \rho M / R^2$ linewidth set by pressure \rightarrow set by stellar radius R

Class I: supergiant

Class II: bright giants

Class III: normal ("red" giants)

Class IV: subgiants

Class V: main sequence (non-giants = "dwarfs"); Sun is G5V

Absorption Lines: Probing the Depths

so far: focused on absorption line *shape* but important information also in line *depth* below the continuum level

Q: what is needed to measure line depth?

Q: in high-resolution spectra, what sets line depth at each ν ?

Q: as absorber density increases, effect on line?

absorption cross section (line oscillator strength) generally known www: online databases

Q: given this, what quantitative information does line depth give?

Absorption Lines: Radiation Transfer

consider a (spatially) unresolved source, with angular area $\Delta\Omega$ if no material in foreground, observed flux $F_{\nu}(0) \approx I_{\nu}(0) \Delta\Omega$

with intervening absorbers of density n at T, observed flux is

$$F_{\nu} = e^{-\tau_{\nu}} F_{\nu}(0) + (1 - e^{-\tau_{\nu}}) S_{\nu}(T) \Delta\Omega$$
 (3)

but usually for bright sources, $S_{\nu}(T)$ $\Delta\Omega \ll F_{\nu}(0)$ and we have $F_{\nu} \approx e^{-\tau_{\nu}}$ $F_{\nu}(0)$

near $\nu_{u\ell}$ for absorber transition $\ell \to u$, optical depth is

$$\tau_{\nu} = \sigma_{\nu} \ N_{\ell} \left(1 - \frac{g_u N_u}{g_{\ell} N_{\ell}} \right) \tag{4}$$

where $N_i \equiv \int n_i \ ds$ is absorber *column density* for level i

the last factor accounts for stimulated emission but usually $g_u N_u \ll g_\ell N_\ell$ Q: why?, so that $\tau_\nu \approx \sigma_\nu$ N_ℓ

So if we assume we know the spectral shape $F_{\nu}(0)$ of the background source across the line profile then the observed deviation from this continuum i.e., line profile $F_{\nu}/F_{\nu}(0)=e^{-\tau_{\nu}}$ directly measures optical depth $\tau_{\nu}\approx\sigma_{\ell u}N_{\ell}$

but the absorption cross section is

$$\sigma_{\ell u}(\nu) = \pi e^2 / m_e c \ f_{\ell u} \ \phi_{\ell u}(\nu) \tag{5}$$

oscillator strength $f_{\ell u}$ usually known (i.e., measured in lab) so at high resolution:

- ullet line profiledepth
 ightarrow absorber $column\ density\ N_\ell$
- line profile $shape \to absorber$ profile function $\phi_{\ell u}(\nu)$ which encodes, e.g., temperature via core width $b=\sqrt{2kT/m}$, and collisional broadening via wing with Γ

Depth of Line Center

if the absorbers have a Gaussian velocity distribution then the optical depth profile is $au_{
u} = au_{0} \ e^{- extbf{v}^{2}/b^{2}}$ with the Doppler velocity $v = (\nu_0 - \nu)/\nu_0 c$, and thus $au_{
u}$ is also Gaussian in u

the optical depth a the line center is

$$\tau_0 = \sqrt{\pi} \left(\frac{e^2}{m_e c} \right) \frac{N_\ell f_{\ell u} \lambda_{\ell u}}{b} \left[1 - \frac{g_u N_u}{g_\ell N_\ell} \right] \tag{6}$$

ignoring the stimulated emission term $[\cdots]$, for H Lyman α

$$au_0 = 0.7580 \ \left(\frac{N_\ell}{10^{13} \ \text{cm}^{-2}}\right) \ \left(\frac{f_{\ell u}}{0.4164}\right) \ \left(\frac{\lambda_{\ell u}}{1215.7 \ \text{\AA}}\right) \ \left(\frac{10 \ \text{km/s}}{b}\right)$$

so if we can measure au_0 , we get column N_ℓ

Q: in low-resolution spectra, what information is lost?

Q: what information remains?