Astro 501: Radiative Processes Lecture 5 Jan 25, 2013

Announcements:

- Problem Set 1 due now
- Problem Set 2 available, due at start of class next Friday

Last time: the glorious equation of radiation transfer *Q*: what is it?

- *Q:* what is optical depth? column density?
- Q: what is source function? why is it important?

 \vdash

equation of radiation transfer

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} = -\alpha_{\nu}(I_{\nu} - S_{\nu})$$
$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}$$

with source function

$$S_{\nu} = \frac{j_{\nu}}{\alpha_n u} \tag{1}$$

and optical depth $d\tau_{\nu} = \alpha_{\nu} \ ds$, so that

$$\tau_{\nu} = \int_{s_0}^{s} \alpha_{\nu} \, ds = \sigma_{\nu} \, N_{\mathsf{a}} \tag{2}$$

with column density

$$N_{\mathsf{a}} = \int_{s_0}^{s} n_{\mathsf{a}} \, ds \tag{3}$$

Ν

Blackbody Radiation

Radiation and Thermodynamics

consider an enclosure ("box 1") in thermodynamic equilibrium at temperature T

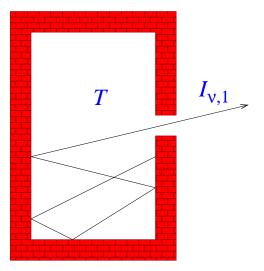
the matter in box 1

- is in random thermal motion
- will absorb and emit radiation details of which depends on the details of box material and geometry
- but equilibrium

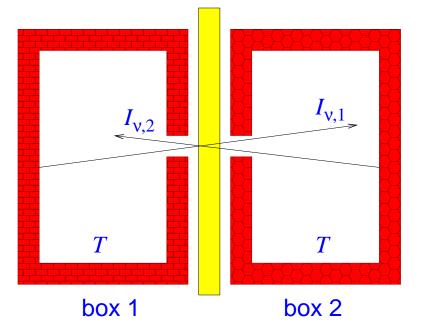
4

 \rightarrow radiation field in box doesn't change

open little hole: escaping radiation has intensity $I_{
u,1}$



now add another enclosure ("box 2"), also at temperature T but made of *different material* filter



separate boxes by filter passing only frequency ν radiation from each box incident on screen

- *Q: imagine* $I_{\nu,1} > I_{\nu,2}$; what happens?
- Q: lesson?

СЛ

Q: how would $I_{\nu,1}$ change if we increased the box volume but kept it at T?

Blackbody Radiation

if both boxes at same $T \Rightarrow$ no net energy transfer but this requires $I_{\nu,1} = I_{\nu,2}$ and so the radiation is:

- independent of the composition of the box
- a universal function of T
- isotropic *Q*: why?
- blackbody radiation with intensity $B_{\nu}(T)$

Implications:

- $B_{\nu}(T)$ and thus B(T) depends only on T, not on cavity volume V or composition
- thus blackbody energy density $u(T) = 4\pi B(T)/c$ also depends only on T, not on V
- thus in volume V, photon energy is U = u(T) V
- and pressure is P(T) = u(T)/3, also independent of V

σ

Lesson: radiation has energy, exchanges it with environment \rightarrow radiation can be treated thermodynamically

Thermodynamics Recap

First Law of Thermodynamics: heat is work! adding *heat energy* dQ to system changes system *energy* U and/or *pressure* P:

$$dQ = dU + pdV \tag{4}$$

Second Law of Thermodynamics: heat is entropy!

$$T \ dS = dQ \tag{5}$$

together

1

$$T \ dS = dU + P \ dV \tag{6}$$

and thus entropy S = S(T, V) obeys

$$dS = \frac{dU}{T} + \frac{P}{T}dV \tag{7}$$

entropy S = S(T, V) obeys

$$dS = \frac{dU}{T} + \frac{P}{T}dV \tag{8}$$

and thus we have

$$\partial_T S = \frac{\partial_T U}{T} \tag{9}$$

$$\partial_V S = \frac{\partial_V U + P}{T} \tag{10}$$

which means

$$\partial_V \partial_T S = \frac{\partial_V \partial_T U}{T} \tag{11}$$

$$\partial_T \partial_V S = \frac{\partial_T \partial_V U}{T} - \frac{\partial_V U}{T^2} + \partial_T \left(\frac{P}{T}\right)$$
 (12)

but mix partial derivatives equal, e.g., $\partial_V \partial_T S = \partial_T \partial_V S$, and note that $\partial_V U|_T = u$ energy density, so

$$\infty$$

$$u = T^2 \ \partial_T \left(\frac{P}{T}\right) \tag{13}$$

Radiation Thermodynamics

general thermodynamic considerations give:

$$u = T^2 \ \partial_T \left(\frac{P}{T}\right) \tag{14}$$

now specialize to radiation: P = P(T) = u(T)/3

$$T\frac{d}{dT}\left(\frac{u}{T}\right) = 3\frac{u}{T} \tag{15}$$

which gives

$$\frac{d(u/T)}{u/T} = 3 \frac{dT}{T}$$
(16)

$$\ln\left(\frac{u}{T}\right) = 3\ln(T) + \ln(a) \tag{17}$$

$$u(T) = a T^4 \tag{18}$$

9

radiation energy density

$$u(T) = a T^4 \tag{19}$$

- $u(T) \propto T^4$: strong T dependence!
- implies $B(T) = ac/4\pi T^4$, and $F(T) = \pi B(T) = ac/4 T^4$
- *a* is the "radiation constant"
 value not determined by thermodynamics alone

Note: *blackbody quantities fixed entirely by T* no adjustable parameters!

Radiation Entropy

Using $U = aT^4V$ and P = u/3, can solve for radiation entropy

$$S_{\rm rad} = \frac{4}{3}aT^3 \ V \tag{20}$$

and thus entropy density $s_{rad}(T) = S/V = 4/3 \ aT^3$

if entropy constant in a parcel of radiation

 \rightarrow *adiabatic* process:

11

$$T_{\text{adiabat}} \propto V^{-1/3}$$
 (21)
 $P_{\text{adiabat}} \propto T_{\text{adiabat}}^4 \propto V^{-4/3}$ (22)

writing $P \propto V^{-\gamma}$, we have an *adiabatic index* $\gamma_{rad} = 4/3$

Q: but how do we get the constant a?

Gossip Break: Chandra Story

The Quantum Mechanics of Blackbody Radiation

to have deeper understanding of radiation thermodynamics and to find radiation constant aneed to study radiation in more detail \rightarrow need physical picture of radiation

can try classical description: radiation as EM waves different frequencies ("modes") all thermally excited \rightarrow gives somewhat wrong answers, e.g., $u(T) = 8\pi kT/c^3 \int_0^\infty \nu^2 d\nu \rightarrow \infty$ "ultraviolet catastrophe"

Historically, this disaster drove Planck & Einstein to a new *microscopic* picture of quanta: photons

 $\stackrel{t_{d}}{\underset{in}{\Rightarrow}} \rightarrow$ of course this gives correct blackbody description in a *statistical mechanics* description of photons

Statistical Mechanics in a Nutshell

classically, **phase space** (\vec{x}, \vec{p}) completely describes particle state

Q: phase space lifestyle of single classical 1-D free body? of single 1-D harmonic oscillator?Q: a swarm of free bodies? oscillators?

but quantum mechanics \rightarrow uncertainty $\Delta x \Delta p \geq \hbar/2$

semi-classically:

can show that a quantum particle must occupy

a *minimum* phase space "volume"

 $[4x \ dp_x)(dy \ dp_y)(dz \ dp_z) = h^3 = (2\pi\hbar)^3$ per quantum state of fixed \vec{p}

Distribution Function

define "occupation number" or "distribution function" $f(\vec{x}, \vec{p})$: number of particles in each phase space "cell" *Q: f range for fermions? bosons? Q: what is f for one classical particle? many classical particles?*

Given distribution function, total number of particles is

$$dN = gf(\vec{x}, \vec{p}) \; \frac{d^3 \vec{x} \; d^3 \vec{p}}{h^3}$$
 (23)

where g is # internal (spin/helicity) states: Q: $g(e^{-})$? $g(\gamma)$? g(p)?

15

particle phase space occupation f determines bulk properties *Q: how? Hint*—what's # particles per unit spatial volume? Fermions: $0 \le f \le 1$ (Pauli) Bosons: $f \ge 0$ $g(e^-) = 2s(e^-) + 1 = 2$ electron, same for p $g(\gamma) = 2$ (polarizations) photon

Particle phase space occupation f determines bulk properties

Number density

$$n(\vec{x}) = \frac{d^3 N}{d^3 x} = \frac{g}{h^3} \int d^3 \vec{p} \ f(\vec{p}, \vec{x})$$
(24)

Q: this expressions is general-specialize to photons?

for photons
$$E = cp = h\nu$$

so $d^3p = p^2 dp d\Omega = h^3/c^3 \nu^2 d\nu d\Omega$

photon number density is thus

$$dn = \frac{2}{c^3} \nu^2 f(\nu) \ d\nu \ d\Omega \tag{25}$$

and thus we have

$$\frac{dn_{\nu}}{d\Omega} = \frac{dn}{d\nu \ d\Omega} = \frac{2}{c^3}\nu^2 \ f(\nu) \tag{26}$$

thus f gives a general, fundamental description of photon fields the challenge is to find the physics that determines f \rightarrow spoiler alert: you have already seen a version of it! but will see it again as the Boltzmann equation!

17

Note: distribution function $f(\nu)$ and specific intensity I_{ν} are equivalent and interchangeable descriptions Q: why? how do we get I_{ν} from $f(\nu)$?

Distribution Function and Observables

distribution function $f(\nu)$ is related to photon number via

$$\frac{dn_{\nu}}{d\Omega} = \frac{dN}{dV \ d\nu \ d\Omega} = \frac{2}{c^3} \nu^2 \ f(\nu)$$
(27)

but we found that photon specific intensity is related to specific number density via

$$I_{\nu} = c \ h\nu \ \frac{dn_{\nu}}{d\Omega} \tag{28}$$

but this means that the two are related via

$$I_{\nu} = \frac{2h}{c^2} \nu^3 f(\nu)$$
 (29)

18

Equilibrium Occupation Numbers

So far, totally general description of photon fields no assumption of thermodynamic equilibrium

in thermodynamical equilibrium at T, the distribution function is also the *occupation number* i.e., average *number* of photons with freg ν

$$f(\nu, T) = \frac{1}{e^{h\nu/kT} - 1}$$
 (30)

see derivation in today's Director's Cut Extras

- Q: at fixed T, for which ν is f large? small?
- *Q:* sketch of $f(\nu)$?
- *Q*: what does this all mean physically?
- $\frac{1}{6}$ Q: when is f zero?
 - Q: in which regime do we expect classical behavior? quantum?

Blackbody Radiation Properties

Using the blackbody distribution function, we define

$$B_{\nu}(T) \equiv I_{\nu}(T) = \frac{2h}{c^2} \nu^3 f(\nu, T)$$
 (31)

and thus we have

$$B_{\nu}(T) = \frac{2h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(32)

with h = Planck's constant, k = Boltzmann's constant

in wavelength space

$$B_{\lambda}(T) = 2hc^2 \frac{\lambda^{-5}}{e^{hc/\lambda kT} - 1}$$
(33)

20

Blackbody Photon Occupation Number

at a fixed temperature T and frequency ν we want the distribution function f, i.e., the occupation number i.e., the average number of photons with frequency ν

Boltzmann: probability of having state n of energy E_n proportional to $p_n = e^{-E_n/kT}$

Planck: *n* photons have $E_n = h\nu$, so $p_n = e^{-nx}$ with $x = h\nu/kT$

So average number is

$$f = \langle n \rangle = \frac{\sum_{n} n p_{n}}{\sum_{n} p_{n}} = \frac{\sum_{n} n e^{-nx}}{\sum_{n} e^{-nx}}$$
(34)

note that
$$\sum_{n} ne^{-nx} = -\partial_x \sum_{n} e^{-nx}$$
, so

$$f = -\partial_x \ln\left(\sum_{n} e^{-nx}\right)$$
(35)

but geometric series has sum

$$\sum_{n} e^{-nx} = \sum_{n} (e^{-x})^n = \frac{1}{1 - e^{-x}}$$
(36)

and thus

$$f = -\partial_x \ln \frac{1}{1 - e^{-x}} = \partial_x \ln(1 - e^{-x})$$
 (37)

$$= \frac{e^{-x}}{1 - e^{-x}}$$
(38)

which gives

$$f(\nu, T) = \frac{1}{e^{h\nu/kT} - 1}$$
 (39)

23

which was to be shewn