
Astro 501: Radiative Processes

Lecture 5

Jan 25, 2013

Announcements:

• Problem Set 1 due now

• Problem Set 2 available, due at start of class next Friday

Last time: the glorious equation of radiation transfer

Q: what is it?

Q: what is optical depth? column density?

Q: what is source function? why is it important?
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equation of radiation transfer

dIν

ds
= −ανIν + jν = −αν (Iν − Sν)

dIν

dτν
= −Iν + Sν

0

s

s

ds

with source function

Sν =
jν

αnu
(1)

and optical depth dτν = αν ds, so that

τν =

∫ s

s0
αν ds = σν Na (2)

with column density

Na =

∫ s

s0
na ds (3)
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Blackbody Radiation
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Radiation and Thermodynamics

consider an enclosure (“box 1”)

in thermodynamic equilibrium at temperature T

the matter in box 1

• is in random thermal motion

• will absorb and emit radiation

details of which depends on

the details of box material and geometry

• but equilibrium

→ radiation field in box doesn’t change

Iν,1T

box 1

open little hole: escaping radiation has intensity Iν,14



now add another enclosure (“box 2”), also at temperature T

but made of different material

IνIν

filter

T T

box 1 box 2

,2
,1

separate boxes by filter passing only frequency ν

radiation from each box incident on screen

Q: imagine Iν,1 > Iν,2; what happens?

Q: lesson?

Q: how would Iν,1 change if we increased the box volume

but kept it at T?
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Blackbody Radiation

if both boxes at same T ⇒ no net energy transfer

but this requires Iν,1 = Iν,2 and so the radiation is:

• independent of the composition of the box

• a universal function of T
• isotropic Q: why?

• blackbody radiation with intensity Bν(T)

Implications:

• Bν(T) and thus B(T) depends only on T ,

not on cavity volume V or composition

• thus blackbody energy density u(T) = 4πB(T)/c
also depends only on T , not on V

• thus in volume V , photon energy is U = u(T)V
• and pressure is P(T) = u(T)/3, also independent of V

Lesson: radiation has energy, exchanges it with environment

→ radiation can be treated thermodynamically

6



Thermodynamics Recap

First Law of Thermodynamics: heat is work!

adding heat energy dQ to system changes

system energy U and/or pressure P :

dQ = dU + pdV (4)

Second Law of Thermodynamics: heat is entropy!

T dS = dQ (5)

together

T dS = dU + P dV (6)

and thus entropy S = S(T, V ) obeys

dS =
dU

T
+

P

T
dV (7)
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entropy S = S(T, V ) obeys

dS =
dU

T
+

P

T
dV (8)

and thus we have

∂TS =
∂TU

T
(9)

∂V S =
∂V U + P

T
(10)

which means

∂V ∂TS =
∂V ∂TU

T
(11)

∂T∂V S =
∂T∂V U

T
−

∂V U

T2
+ ∂T

(

P

T

)

(12)

but mix partial derivatives equal, e.g., ∂V ∂TS = ∂T∂V S,

and note that ∂V U |T = u energy density, so

u = T2 ∂T

(

P

T

)

(13)
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Radiation Thermodynamics

general thermodynamic considerations give:

u = T2 ∂T

(

P

T

)

(14)

now specialize to radiation: P = P(T) = u(T)/3

T
d

dT

(

u

T

)

= 3
u

T
(15)

which gives

d(u/T)

u/T
= 3

dT

T
(16)

ln

(

u

T

)

= 3 ln(T) + ln(a) (17)

u(T) = a T4 (18)
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radiation energy density

u(T) = a T4 (19)

• u(T) ∝ T4: strong T dependence!

• implies B(T) = ac/4π T4,

and F(T) = πB(T) = ac/4 T4

• a is the “radiation constant”

value not determined by thermodynamics alone

Note: blackbody quantities fixed entirely by T

no adjustable parameters!

1
0



Radiation Entropy

Using U = aT4V and P = u/3, can solve for

radiation entropy

Srad =
4

3
aT3 V (20)

and thus entropy density srad(T) = S/V = 4/3 aT3

if entropy constant in a parcel of radiation

→ adiabatic process:

Tadiabat ∝ V −1/3 (21)

Padiabat ∝ T4
adiabat∝ V −4/3 (22)

writing P ∝ V −γ, we have

an adiabatic index γrad = 4/3

Q: but how do we get the constant a?
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Gossip Break: Chandra Story
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The Quantum Mechanics of Blackbody Radiation

to have deeper understanding of radiation thermodynamics

and to find radiation constant a

need to study radiation in more detail

→ need physical picture of radiation

can try classical description: radiation as EM waves

different frequencies (“modes”) all thermally excited

→ gives somewhat wrong answers, e.g., u(T) = 8π kT/c3
∫∞
0 ν2 dν→∞

“ultraviolet catastrophe”

Historically, this disaster drove Planck & Einstein to a new

microscopic picture of quanta: photons

→ of course this gives correct blackbody description

in a statistical mechanics description of photons

1
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Statistical Mechanics in a Nutshell

classically, phase space (~x, ~p)

completely describes particle state

Q: phase space lifestyle of single classical 1-D free body?

of single 1-D harmonic oscillator?

Q: a swarm of free bodies? oscillators?

but quantum mechanics → uncertainty ∆x∆p ≥ h̄/2

semi-classically:

can show that a quantum particle must occupy

a minimum phase space “volume”

(dx dpx)(dy dpy)(dz dpz) = h3 = (2πh̄)3

per quantum state of fixed ~p
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Distribution Function

define “occupation number” or “distribution function” f(~x, ~p):

number of particles in each phase space “cell”

Q: f range for fermions? bosons?

Q: what is f for one classical particle? many classical particles?

Given distribution function, total number of particles is

dN = gf(~x, ~p)
d3~x d3~p

h3
(23)

where g is # internal (spin/helicity) states:

Q: g(e−)? g(γ)? g(p)?

particle phase space occupation f determines bulk properties

Q: how? Hint–what’s # particles per unit spatial volume?
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Fermions: 0 ≤ f ≤ 1 (Pauli)

Bosons: f ≥ 0 g(e−) = 2s(e−) + 1 = 2 electron, same for p

g(γ) = 2 (polarizations) photon

Particle phase space occupation f determines bulk properties

Number density

n(~x) =
d3N

d3x
=

g

h3

∫

d3~p f(~p, ~x) (24)

Q: this expressions is general–specialize to photons?
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for photons E = cp = hν

so d3p = p2 dp dΩ = h3/c3 ν2 dν dΩ

photon number density is thus

dn =
2

c3
ν2 f(ν) dν dΩ (25)

and thus we have

dnν

dΩ
=

dn

dν dΩ
=

2

c3
ν2 f(ν) (26)

thus f gives a general, fundamental description of photon fields

the challenge is to find the physics that determines f

→ spoiler alert: you have already seen a version of it!

but will see it again as the Boltzmann equation!

Note: distribution function f(ν) and specific intensity Iν

are equivalent and interchangeable descriptions

Q: why? how do we get Iν from f(ν)?
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Distribution Function and Observables

distribution function f(ν) is related to photon number via

dnν

dΩ
=

dN

dV dν dΩ
=

2

c3
ν2 f(ν) (27)

but we found that photon specific intensity is related to

specific number density via

Iν = c hν
dnν

dΩ
(28)

but this means that the two are related via

Iν =
2h

c2
ν3 f(ν) (29)
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Equilibrium Occupation Numbers

So far, totally general description of photon fields

no assumption of thermodynamic equilibrium

in thermodynamical equilibrium at T , the distribution function

is also the occupation number

i.e., average number of photons with freq ν

f(ν, T) =
1

ehν/kT − 1
(30)

see derivation in today’s Director’s Cut Extras

Q: at fixed T , for which ν is f large? small?

Q: sketch of f(ν)?

Q: what does this all mean physically?

Q: when is f zero?

Q: in which regime do we expect classical behavior? quantum?
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Blackbody Radiation Properties

Using the blackbody distribution function, we define

Bν(T) ≡ Iν(T) =
2h

c2
ν3 f(ν, T) (31)

and thus we have

Bν(T) =
2h

c2
ν3

ehν/kT − 1
(32)

with h = Planck’s constant, k = Boltzmann’s constant

in wavelength space

Bλ(T) = 2hc2
λ−5

ehc/λkT − 1
(33)
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Director’s Cut Extras
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Blackbody Photon Occupation Number

at a fixed temperature T and frequency ν

we want the distribution function f , i.e., the occupation number

i.e., the average number of photons with frequency ν

Boltzmann: probability of having state n of energy En

proportional to pn = e−En/kT

Planck: n photons have En = hν, so pn = e−nx

with x = hν/kT

So average number is

f = 〈n〉 =

∑

n npn
∑

n pn
=

∑

n ne−nx

∑

n e−nx
(34)
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note that
∑

n ne−nx = −∂x
∑

n e−nx, so

f = −∂x ln

(

∑

n
e−nx

)

(35)

but geometric series has sum

∑

n
e−nx =

∑

n
(e−x)n =

1

1 − e−x
(36)

and thus

f = −∂x ln
1

1 − e−x
= ∂x ln(1 − e−x) (37)

=
e−x

1 − e−x
(38)

which gives

f(ν, T) =
1

ehν/kT − 1
(39)

which was to be shewn
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