Astro 501: Radiative Processes Lecture 7 Jan 30, 2013

Announcements:

• Problem Set 2 sue at start of class Friday

Last time: Kirchhoff's law

Q: what is it?

Q: why might it seem like a miracle?

Q: why might it not seem like a miracle?

hint–consider emission/absorption if Kirchhoff not true?

Q: what's the difference between a thermal radiation

and blackbody radiation?

н

Kirchhoff's Law Recap

Kirchhoff: *any* matter in thermal equilibrium at T:

$$S_{\nu}(T) = B_{\nu}(T) \qquad (1)$$

$$j_{\nu}(T) = \alpha_{\nu}(T) B_{\nu}(T) \qquad (2)$$

- emission rate related to absorption rate
- good emitters are good absorbers

How does emission "know" to be related to absorption?

If emission exceeded absorption, matter loses energy would cool until emission = absorption condition of equilibrium enforces "detailed balance"

 $^{\triangleright}$ thermal radiation: emitted by any matter at T blackbody radiation: emitted optically thick matter at T

Two-Level Systems in Radiative Equilibrium

consider an ensemble of systems ("atoms") with

- two discrete energy levels E_1, E_2
- and degeneracies g_1, g_2
 - i.e., a number g_1 of distinct states have energy E_1

in thermodynamic equilibrium at T, emission and absorption exchange energy with photon field

ω

- Q: when & why emit? absorb?
- Q: connection between emission, absorption rates in ensemble?

Spontaneous Emission

in general, atoms in states with higher energy E_2 will *decay* to lower level E_1 photon of energy $\Delta E = E_2 - E_1 = h\nu_0$ will be emitted

transition can occur without influence of other atoms, photons **spontaneous emission**: $X_2 \rightarrow X_1 + h\nu$

spontaneous emission rate per atom is $E_2 \rightarrow E_1$ transition rate per atom:

transition probability per unit time per atom = A_{21} (3)

- "Einstein A" coefficient
- units $[A_{21}] = [\sec^{-1}]$
- spontaneous: A_{21} independent of T
- but A_{21} does depend on detailed atom properties

Absorption

atoms in lower state E_1 only promoted to state E_2 by absorbing a photon of energy ΔE $h\nu+X_1\to X_2$

if levels were perfectly sharp, absorb only at $\Delta E = h\nu_0$ but in general, energy levels have *finite width* i.e., *line energies "smeared out*" by some amount $h \Delta nu$ so transitions can be made by photons with frequencies $\nu_0 - \Delta \nu \lesssim \nu \lesssim \nu_0 + \Delta \nu$

useful to define line profile function $\phi(\nu)$ with normalization $\int \phi(\nu) \ d\nu = 1$ e.g., Gaussian, Lorentzian, Voight functions

^σ limiting case of sharp levels $\Delta \nu \rightarrow 0$: $\phi(\nu) \rightarrow \delta(\nu - \nu_0)$

absorptions require ambient photons

thus absorption rate per atom *depends on photon field* and ensemble *average absorption rate* depends on average intensity

$$\bar{J} \equiv \int \phi(\nu) \ J_{\nu} \ d\nu \tag{4}$$

limiting case of sharp levels: $\overline{J} \to J_{\nu_0}$

thus write average absorption rate as

transition probability per time per atom $= B_{12}\overline{J}$ (5)

- "Einstein *B* coefficient"
- B_{12} is probability per time per intensity
- • depends on atom and state details
 - \bullet but does not depend on T

Stimulated Emission

Einstein postulated a new emission mechanism: *driven by* photons with transition energy $\nu_0 - \Delta \nu \lesssim \nu \lesssim \nu_0 + \Delta \nu$ $h\nu + X_2 \rightarrow X_1 + 2h\nu$

I.e., the presence of transition photons creates "peer pressure" "encourages" atoms in higher state to make transition faster than they would spontaneously: **stimulated emission** plausible? yes-photons interact with and perturb atoms

if stimulated emission exists, should also depend on \overline{J} \rightarrow rate per atom is

transition probability per time per atom $= \frac{B_{21}\overline{J}}{B_{21}}$ (6)

• note stimulated emission coefficient B_{21} can be *different from* absorption coefficient B_{12}

 $\overline{}$

• if stimulated emission doesn't happen, would find $B_{21} = 0$

The Equilibrium Condition

In thermodynamic equilibrium, the numbers n_1, n_2 of atoms in each state do not change with time \rightarrow total emission rate is equal to absorption rate

$$n_2 A_{21} + n_2 B_{21} \bar{J} = n_1 B_{12} \bar{J} \tag{7}$$

solve for ambient radiation field

$$\bar{J} = \frac{A_{21}/B_{21}}{n_1/n_2 \ B_{12}/B_{21} - 1} \tag{8}$$

in thermodynamic equilibrium, atom state populations follow *Boltzmann distribution*

$$\frac{n_1}{n_2} = \frac{g_1 e^{-E_1/kT}}{g_2 e^{-E_2/kT}} = \frac{g_1}{g_1} e^{(E_2 - E_1)/kT} = \frac{g_1}{g_1} e^{h\nu_0/kT}$$
(9)

and so

$$\bar{J} = \frac{A_{21}/B_{21}}{g_1/g_2 \ B_{12}/B_{21} \ e^{h\nu_0/kT} - 1}$$
(10)

thus we find that in equilibrium, the mean intensity near ν_0 is

$$\bar{J} = \frac{A_{21}/B_{21}}{g_1/g_2 \ B_{12}/B_{21} \ e^{h\nu_0/kT} - 1}$$
(11)

but in equilibrium, and with narrow linewidth, the mean intensity should be blackbody result:

$$\bar{J} \to B_{\nu}(T) = \frac{2h\nu^3/c^2}{e^{h\nu/kT} - 1}$$
 (12)

Q: what condition(s) must hold to satisfy both equations for any T?

ဖ

because A and both B do not depend on T the only way to have, at any T,

$$\bar{J} = \frac{2h\nu^3/c^2}{e^{h\nu/kT} - 1} = \frac{A_{21}/B_{12}}{g_1/g_2 \ B_{12}/B_{21} \ e^{h\nu/kT} - 1}$$
(13)

is to require two *Einstein relations*

$$A_{21} = \frac{2h \nu^3}{c^2} B_{21}$$
(14)
$$g_2 B_{21} = g_1 B_{12}$$
(15)

- these relations are independent of T: hold even without thermal equilibrium!
- B₂₁ ≠ 0: spontaneous emission exists! and typically has probability comparable to absorption! give it up for Big AI!

Two-Level Systems: Thermal Radiation

Now consider the two-level atom as a radiating system What are the emission and absorption coefficients?

Emission Coefficient

spontaneous emission rate per atom in state 2: A_{21} \rightarrow rate per volume: n_2A_{21} \rightarrow total power emitted per volume: $h\nu_0 n_2A_{21}$ emission isotropic \rightarrow power per volume per solid angle: $h\nu_0 n_2A_{21}/4\pi$ Q: why?

but still need *frequency spectrum* of emitted radiation, i.e., *emission profile*

11

Q: simplest assumption?

simplest assumption (generally accurate): \rightarrow emission spectrum profile = absorption profile $\phi(\nu)$

and thus energy released in spontaneous emission is

$$d\mathcal{E} = \frac{h\nu_0}{4\pi} n_2 A_{21} \phi(\nu) \ dV \ dt \ d\nu \ d\Omega \tag{16}$$

and thus the emission coefficient is

$$j_{\nu} = \frac{h\nu_0}{4\pi} n_2 A_{21} \phi(\nu) \tag{17}$$

absorption coefficient

absorption rate per atom in level 1: $B_{12}\overline{J}$ thus energy absorbed is

$$d\mathcal{E} = \frac{h\nu_0}{4\pi} n_1 B_{12} \bar{J} \, dV \, dt \tag{18}$$

but $4\pi \overline{J} = \int d\Omega \int I_{\nu} \phi(\nu) \ d\nu$, so

$$d\mathcal{E} = \frac{h\nu_0}{4\pi} n_1 B_{12} I_\nu \phi(\nu) \ dV \ dt \ d\Omega \ d\nu \tag{19}$$

recall: path element ds in area dA has volume dV = ds dA and so we find absorption coefficient

$$\alpha_{\text{abs},\nu} = \frac{h\nu_0}{4\pi} n_1 B_{12} \phi(\nu)$$
 (20)

13

...but we are not done! *Q: because...?*

stimulated emission

tempting to include this as additional emission term

but wait! stimulated emission depends on (average) intensity \rightarrow formally more similar to absorption

formally better to treat stimulated emission as a *negative absorption* term:

$$\alpha_{\text{stim},\nu} = -\frac{h\nu_0}{4\pi} n_2 B_{21} \phi(\nu)$$
 (21)

and then (net) absorption coefficient

$$\alpha_{\nu} = \alpha_{\text{abs},\nu} + \alpha_{\text{stim},\nu} \tag{22}$$

$$= \frac{h\nu_0}{4\pi}\phi(\nu) \ (n_1B_{12} - n_2B_{21}) \tag{23}$$

Two-Level Radiation Transfer

Transfer equation for two-level atom

$$\frac{dI_{\nu}}{ds} = -\frac{h\nu_0}{4\pi}\phi(\nu) \quad (n_1B_{12} - n_2B_{21}) I_{\nu} + \frac{h\nu_0}{4\pi}n_2A_{21}\phi(\nu) \quad (24)$$
 source function

$$S_{\nu} = \frac{n_2 A_{21}}{n_1 B_{12} - n_2 B_{21}} \tag{25}$$

Einstein relations give

$$\alpha_{\nu} = \frac{h\nu_0}{4\pi} \phi(\nu) \ n_1 B_{12} \left(1 - \frac{n_2 g_1}{n_1 g_2} \right)$$
(26)

$$S_{\nu} = \frac{2h\nu^3/c^2}{(n_1/n_2)(g_2/g_1) - 1}$$
(27)

a generalization of Kirchhoff's laws these *do not assume thermal equilibrium!*

Q: interesting cases?

Local Thermodynamic Equilibrium

if atom levels are in thermodynamic equilibrium then we have $n_1/n_2 = (g_1/g_2)e^{h\nu/kT}$ and

$$S_{\nu} = \frac{2h\nu^3/c^2}{e^{h\nu/kT} - 1} = B_{\nu}(T)$$
(28)

we recover the usual Kirchhoff's law! as we must!

and absorption term becomes

$$\alpha_{\nu} = \frac{h\nu_0}{4\pi} \phi(\nu) \ n_1 B_{12} \left(1 - e^{-h\nu/kT} \right)$$
(29)

i.e., "uncorrected" term minus stimulated emission correction

What if not in thermodynamic equilibrium? then $n_1/n_1 \neq$ Boltzmann expression emission is nothermal

Inverted Populations

two-level absorption coefficient is:

$$\alpha_{\nu} = \frac{h\nu_0}{4\pi} \phi(\nu) \ n_1 B_{12} \left(1 - \frac{n_2 g_1}{n_1 g_2} \right) \tag{30}$$

note that the algebraic sign

17

depends on population levels, i.e., on n_2/n_1 normally, lower level more populated: $n_1 > n_2$

If we can arrange or stumble upon a system where

$$\frac{n_1}{g_1} < \frac{n_2}{g_2}$$
 (31)

i.e., an *inverted population*, then $\alpha_{\nu} < 0!$

Q: and then what happens to propagating light? Q: examples?

Q: how might we arrange an inverted population?

Masers

if $\alpha_{\nu} < 0$, then propagating light has exponential *increase* in intensity!

stimulated emission causes a "cascade" of photons

in lab: create inverted populations of atoms use mirrors to "recycle" stimulating photons \rightarrow this is a laser! light amplification by stimulated emission of radiation

in cosmos: inverted populations of molecules maser: microwave amplification by stimulated emission of radiation

how to create inversion? need nonthermal mechanism to "pump" upper level

Pure Scattering

Consider an idealized case with radiation propagating through a medium with "pure scattering," i.e., scattering, but no emission, and no absorption

Recall: intensity in a ray is a directional quantity i.e., really $I_{\nu} = I_{\nu}(\theta, \phi) = I_{\nu}(\hat{n})$, with \hat{n} a unit vector toward $I(\theta, \phi)$

in general: scattering will change both

- photon energy
- photon direction

```
generally, scattering is different for different incident and scattered angles, i.e., anisotropic
```

20

this is generally is (very) not trivial to calculate

but consider even more special case:

- isotropic scattering
- photon energy unchanged ("coherent scattering") good approximation for scattering by non-relativistic *e*

define scattering coefficient α_{sc} such that intensity lost to scattering *out* of ray is

$$dI_{\nu} = -\alpha_{\text{SC},\nu} I_{\nu} ds \tag{32}$$

isotropic scattering $\rightarrow \alpha_{{\rm SC},\nu}$ same for all directions

Q: what is intensity scattered into *the ray?*

Isotropic Coherent Scattering

intensity scattered *out* of ray $I_{\nu}(\hat{n}')$ with solid angle $d\Omega'$ is

$$dI_{\nu}(\hat{n}') = -\alpha_{\text{SC},\nu} I_{\nu}(\hat{n}') ds \qquad (33)$$

if scattering *isotropic*, the portion *into* \hat{n} is

$$dI_{\nu}(\hat{n}) = \frac{d\Omega'}{4\pi} \left| dI_{\nu}(\hat{n}') \right|$$
(34)

and so integrating over all possible solid $d\Omega'$ gives

$$dI_{\nu}(\hat{n}) = \frac{\alpha_{\text{SC},\nu}}{4\pi} \int I_{\nu} \ d\Omega \ ds = \frac{\alpha_{\nu}}{4\nu} \ J_{\nu} \ ds \tag{35}$$

where J_{ν} is the angle-averaged intensity

and thus for isotropic coherent scattering

$$\frac{dI_{\nu}(\hat{n})}{ds} = -\alpha_{\text{sc},\nu} \left[I_{\nu}(\hat{n}) - J_{\nu} \right]$$
(36)

and so the source function is

$$S_{\nu} = J_{\nu} \tag{37}$$

and the transfer equation can be written

$$\frac{dI_{\nu}(\hat{n})}{d\tau_{\nu}} = -I_{\nu}(\hat{n}) + J_{\nu}$$
(38)

note that the mean flux $J_{\nu} = \int I_{\nu}(\hat{n}') d\Omega' / 4\pi$ depends on I_{ν} field in *all directions*

- scattering couples intensity in different directions
- transfer equation becomes integro-differential equation
- \mathbb{R} generally very hard to solve!