
Astro 501: Radiative Processes

Lecture 9

Feb 4, 2013

Announcements:

• Problem Set 3 available, due Friday

Last time: scattering

isotropic coherent scattering Q: what’s that? transfer eq?

random walk Q: what’s that? rms progress after N steps?

scattering and absorption: absorption probability, albedo Q: what’s

that?

Today: scattering in a “fluid” approximation

→ heat flux and the Rosseland mean

begin classical electromagnetic radiation
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Radiative Diffusion: Rosseland Approximation

Imagine a plane-parallel medium:

n, ρ, T only depend on z

Think: interior of a star dz

z

ds=dz  / cos θθ

photon propagation depends only on angle θ
between path direction and ẑ Q: why? why not on φ too?

change to variable µ = cos θ, and note that

path element ds = dz/ cos θ = dz/µ, so

µ
∂Iν(z, µ)

∂z
= −(αν + ςν)(Iν − Sν) (1)

note: deep inside a real star like the Sun, ℓ∗ ∼ 1 cm ≪ R⋆

Q: implications?
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ℓ∗ ∼ 1 cm ≪ R⋆: rapid thermalization, damping of anisotropy

expect stellar interior to have intensity field that

• changes slowly compared to mean free path

• is nearly isotropic

so to zeroth order in ℓ∗, transfer equation

Iν = Sν − µℓ∗
∂Iν(z, µ)

∂z
(2)

gives

I
(0)
ν ≈ S

(0)
ν (T) (3)

this is angle-independent, so: J
(0)
ν = S

(0)
ν and I

(0)
ν = S

(0)
ν = Bν

Iterate to get first-order approximation

I
(1)
ν ≈ S

(0)
ν − µℓ∗∂zI

(0)
ν = Bν −

µ

αν + ςν
∂zBν (4)

what angular pattern does this intensity field have? why?
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to first order, intensity pattern

I
(1)
ν ≈ S

(0)
ν − µℓ∗∂zI

(0)
ν = Bν −

µ

αν + ςν
∂zBν (5)

i.e., a dominant isotropic component plus

small correction ∝ µ = cos θ: a dipole!

if T decreases with z, then ∂zBν < 0, and so

intensity brighter downwards (looking into hotter region)

use this find net specific flux along z

Fν(z) =

∫

I
(1)
ν (z, µ) cos θ dΩ = 2π

∫ +1

−1
I
(1)
ν (z, µ) µ dµ (6)

only the anisotropic piece of I
(0)
ν of survives Q: why?

Fν(z) = −
2π

αν + ςν
∂zBν

∫ +1

−1
µ2 dµ (7)

= −
4π

3(αν + ςν)
∂zBν (8)
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net specific flux along z

Fν(z) = −
4π

3(αν + ςν)
∂zBν = −

4π

3(αν + ςν)
∂TBν ∂zT (9)

since Bν = Bν(T)

total integrated flux

F(z) =
∫

Fν(z) dν = −
4π

3
∂zT

∫

(αν + ςν)
−1∂Bν

∂T
dν (10)

to make pretty, note that

∫

∂TBν dν = ∂T

∫

Bν dν = ∂TB(T) =
4πσT3

π
(11)

and define Rosseland mean absorption coefficient

1

αR
=

∫

(αν + ςν)−1∂TBν dν
∫

∂TBν dν
(12)

average effective mean free path, weighted by Planck derivative
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Energy Flux in the Rosseland Approximation

using Rosseland mean, we have

F(z) = −
16σT3

3αR

∂T

∂z
(13)

Rosseland approximation to radiative flux

Q: what if T uniform? decreasing upwards? implications for

stars?

Note:

• whenever energy (heat) flux ~F − χ∇T

coefficient χ is the heat conductivity

• in the presence of a heat flux, thermal energy density changes:

∂tu = −∇ · ~F (14)

a continuity equation, i.e., local statement of energy conservation

for radiation, u = u(T), so ∂tT ∼ D∇2T : a diffusion equation!
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in stars, energy must be transported from interior

where it is created by thermonuclear reactions

upwards until it is radiated to space

in regions when temperature gradient ∂zT not too large

radiative diffusion is the mechanism for energy transport

i.e., photons random walk their way out of the star

• typical solar photon is millions of years old

• unlike neutrinos which are minutes old

photon luminosity in interior radius r is

L(r) = 4πr2 F(r) = −4πr2
16σT3

3αR

∂T

∂r
(15)

solar temperature drops with radius, ∂zT < 0,

so L > 0: energy flows outwards!
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Classical Electromagnetic Radiation
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Electromagnetic Forces on Particles

Consider non-relativistic classical particle

with mass m, charge q and velocity ~v

under an electric field ~E and magnetic field ~B
the particle feels a force

~F = q ~E + q
~v

c
× ~B (16)

sums Coulomb and Lorentz forces

units: cgs throughout; has nice property that [E] = [B]

power supplied by EM fields to charge

dUmech

dt
= ~v · ~F = q ~v · ~E =

d

dt

mv2

2
(17)

no contribution from ~B: “magnetic fields do no work”

Q: what if smoothly distributed charge density and velocity field?
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Electromagnetic Forces on Continuous Media

consider a medium with charge density ρq

and current density ~j = ρq~v

by considering an “element” of charge dq = ρq dV

we find force density, defined via d~F = ~f dV :

~f = ρq ~E +
~j

c
× ~B (18)

and a power density supplied by the fields

∂umech

∂t
= ~j · ~E (19)
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note: if medium is a collection of point sources qi, ~ri, ~vi

ρq(~r) =
∑

i

qi δ(~r − ~ri) (20)

and current density is

~j(~r) =
∑

i

qi ~vi δ(~r − ~ri) (21)
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Maxwell’s Equations

Maxwell relates fields to charge and current distributions

in the absence of dielectric media (ǫ = 1)

or permeable media (µ = 1):

∇ · ~E = 4πρq Coulomb’s law

∇ · ~B = 0 no magnetic monopoles

∇× ~E = −1
c∂t

~B Faraday’s law

∇× ~B = 4π
c
~j+1

c∂t
~E Ampère’s law

(22)

take divergence of Ampère

∂tρq +∇ ·~j = 0 (23)

conservation of charge!

now can rewrite power exerted by fields on charges

in terms of fields only Q: how?
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Field Energy

Power density exerted by fields on charges

∂umech

∂t
= ~j · ~E =

1

4π

(

c∇× ~B − ∂t ~E
)

· ~E (24)

with clever repeated use of Maxwell,

can recast in this form:

∂ufields
∂t

+∇ · ~S = −
∂umech

∂t
(25)

Q: physical significance of eq. (25)?
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energy change per unit time

∂ufields
∂t

+∇ · ~S = −
∂umech

∂t
(26)

reminiscent of ∂tρq +∇ ·~j = 0

→ an expression of local conservation of energy

where the mechanical energy acts as source/sink

identify electromagnetic field energy density

ufields =
E2 +B2

8π
(27)

i.e., uE = E2/8π, and uB = B2/8π

and Poynting vector is flux of EM energy

~S =
c

4π
~E × ~B (28)

this is huge for us ASTR 501 folk! EM flux!

Q: when zero? nonzero? direction?
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Electromagnetic Waves

in vacuum (ρq = 0 = ~j), and in Cartesian coordinates

Maxwell’s equations imply (PS3):

∇2 ~E −
1

c2
∂2t

~E = 0 (29)

∇2 ~B −
1

c2
∂2t

~B = 0 (30)

both fields satisfy a wave equation

wave equation invites Fourier transform of fields:

~E(~k, ω) =
1

(2π)2

∫

d3~r dt ~E(~x, t) e−i(~k·~r−ωt) (31)

inverse transformation:

~E(~x, t) =
1

(2π)2

∫

d3~k dω ~E(~k, ω) ei(
~k·~r−ωt) (32)

note symmetry between transformation (but sign flip in phase!)
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original real-space field can be expressed as

~E(~x, t) =
1

(2π)2

∫

d3~k dω ~E(~k, ω) ei(
~k·~r−ωt) (33)

expansion in sum of Fourier modes with

• wavevector ~k

magnitude k = 2π/λ, direction n̂ = ~k/k

• angular frequency ω = 2π ν

apply wave equation to Fourier expansion:

∇2 ~E −
1

c2
∂2t

~E = −
1

(2π)2c2

∫

d3~k dω (c2k2 − ω2) ~E(~k, ω) ei(
~k·~r−ωt)(34)

= 0 (35)

for notrivial solutions with ~E 6= 0,

this requires ω2 = c2k2, or vacuum dispersion relation

ω = ck (36)

i.e., wave solutions require constant phase velocity vφ = ω/k = c
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