
Astronomy 507 Spring 2014
Problem Set #1

Due in class: Friday, Feb. 7
Total points: 10+2

Note: Your homework solutions should be legible and include all calculations, diagrams,
and explanations. Homework is graded on the method of solution, not just the final answer.

Science is a collaborative enterprise, and you are encouraged to discuss the class material
and the problems with your classmates and the instructor. However, you are responsible
for your own answers, which you must understand and write up in your own
words.

Also, it should go without saying, but you may not consult any solutions from previous
versions of this course.

1. Sloan Digital Sky Survey (SDSS): Galaxy Redshifts, Distances, and Densities. The
Sloan survey contains a tremendous amount of cosmological data, most of it publicly
available online. From the course links page, follow the navigate link to go to the
SDSS Navigate Tool, which will start you on a nearby (and thus large and bright)
spiral galaxy; this will be the starting point of your journey. Gathering a bit of data,
you can quickly arrive at some interesting cosmological conclusions.

In the navigate tool, wander around the digital sky. Note that you can zoom in and
out, and that you can (and should) add a grid and labels to the field of view.

You will gather and manipulate data for several galaxies; this is tedious and can
lead to errors. Use a spreadsheet or a simple computer program to keep track of the
bookkeeping.

(a) [1 point] Your first task as a cosmologist is to compute the redshifts of a handful
of real galaxies. To do this, you will need galaxy spectra. Not all SDSS galaxies
have spectra, but using the SpecObjs option you can identify those that do.
Find at least 5 such galaxies randomly (be sure they are galaxies and not stars!).
For each, click on the galaxy in the image, then click the Explore button to
find data and a spectrum for the galaxy; note its r-band magnitude, the middle
value in the ugriz entries. Using rest wavelengths from the SDSS line list (also
linked from the course page), compute redshifts for two lines for at least two of
your galaxies, and show that these agree with each other, and with the value
computed by the automated software.

For each galaxy, use Hubble’s law to find its recession speed, and distance in Mpc.
Compute the average distance to your set of galaxies. About what fraction of
the Hubble length is probed by SDSS?

(b) [1 point] The flux from each galaxy (in different wavelength bands–i.e., colors)
are given as the values of ugriz, which are expressed as apparent magnitudes.1

For each galaxy in (a), use the observed r-band magnitude, which is centered
at 625 nm and thus “red.” Together with the absolute r-band magnitude of

1If you have not yet encountered the charms of the astronomical magnitude system, you are in for a
treat; see the extras from Lecture 5.
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the Sun M⊙,r = 4.4 mag, to compute the galaxy’s r-band luminosity in units of
L⊙,r. Then compute the average galaxy luminosity 〈L〉, in units of L⊙,r.

Compare your results with the Milky Way luminosity, LMW,r ∼ 2× 1010L⊙, and
comment.

(c) [1 point] On the SDSS site, use the Navigate tool to find a random spot in
the sky. Then use the Chart tool to identify all galaxies brighter (in the r-band)
than your measured average–i.e., show all galaxies with magnitude mr < 〈mr〉
(watch out for the fiendish magnitude sign convention!). Use the zoom feature
to adjust the field until there are a manageable (say, 10–20) number N(< 〈mr〉)
of such galaxies. Finally, use the label feature to show the angular size per pixel
along with the width and height parameters to determine the angular area ∆Ω
in the field of view. Use this to compute a sky surface density dNgal,SDSS/dΩ of
galaxies per square arcmin.

(d) [1 point] Use your average distance to SDSS galaxies, your value for dNgal,SDSS/dΩ,
and homogeneity to estimate the number density ngal(< 〈mr〉) of galaxies brighter
than 〈mr〉 in the universe today. Express your answer in objects Mpc−3. Then
go on to estimate the total number of such galaxies in the entire observable
universe. This is a handy number to keep in mind. How does your estimate
compare to the total number of human beings alive on Planet Earth today?

(e) [1 point] Use the average luminosity 〈L〉 of your galaxies, and your estimate
of their number density, to estimate the galaxy luminosity density L in units of
L⊙ Mpc−3. (This is not a hard problem!)

Then use L to find the mass density ρ of the universe, in M⊙ Mpc−3. Do this
assuming that the average mass-to-light ratio Υ is that of

i. stars (assume they are like the Sun)

ii. galaxy halos, where Υhalo ∼ 25h M⊙/L⊙

iii. galaxy clusters, where Υcluster ∼ 300h M⊙/L⊙

Comment on the impact of the difference in these mass-to-light ratios. Which
one do you think is the most appropriate for determining the mass density of
the universe?

The mass density derived from the mass-to-light ratio for local stars is sometimes
called the density of luminous matter ρlum. Use your value of ρlum to compute
Ωlum. Compare your answer with Ωmatter and Ωbaryon, and comment.

(f) [1 bonus point] For a bonus point, comment on complications that would be
involved in firming up some of the estimates we have made in this problem.2

2. SDSS Part Deux: “Size” Distribution

(a) [1 point] Consider the number Ngal(< d) of galaxies found by a survey which
reaches out to some distance d, the survey “depth.” This is sometimes known as
the cumulative “size” distribution since you should find that the result increases
with the survey depth and hence the size of the telescope used for the survey.

2Note for example that SDSS does not randomly choose galaxies for spectroscopic redshifts, but among
other things demands that a galaxy is bright enough so that it will yield sufficient photons to make a
meaningful spectrum.
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Assuming homogeneity, how should Ngal(< d) scale with d?

Also assume for the moment that all galaxies have the same luminosity L. In this
case, the survey depth is given by the minimum flux Fmin the survey instrument
can detect; show how d scales with the flux limit Fmin. Then show how the
number Ngal(> F ) of observed galaxies brighter than F scales with F = Fmin.
Finally, if mmax is the magnitude limit that corresponds to flux limit Fmin, show
how Ngal(< m) scales with m = mmax.

(b) [1 point] Now apply your results: still using the Finding Chart tool, find a
random field and plot it with an image scale of about 1.58 arcsec/pix. Then
instead of plotting all galaxies, plot only the ones with r magnitude between,
say, 0 and 15 mag. Then increase the maximum magnitude, and watch the
change in the number of objects. Comment on the behavior you see. How well
does your prediction work? When does it break down, and why?

3. The Friedmann Equation: Limiting Cases. In class, we studied a matter-dominated
universe, and explicitly solved for some properties of this universe. Here we will
generalize this treatment.

(a) [1 point] Using the Friedmann equation in a “generic” universe with matter,
radiation, Λ, and curvature, show that time and the scale factor are related by

t/tH =

∫ a

0

u du
√

Ωmu+Ωr +ΩΛu4 + (1− Ω0)u2
(1)

i.e., the age t is given by the present Hubble time tH = H−1
0 times a integral

which depends upon the cosmological parameters

(b) [1 point] Find expressions for a(t) for epochs in which the universe is dominated
by either matter, or radiation, or curvature, or Λ. Note that these components
do not necessarily dominate today, so that you should not assume any Ωi = 1.
That is, each of you answers should show a dependence on the present value of
the relevant Ωi.

(c) [1 point] Using the a(t) solutions above, find ρ(t) the case of a radiation-
dominated and then in the case of a matter-dominated universe. In both cases,
express your answer in terms of the dimensionless parameters Ωm or Ωr, and
only the cosmic time t and physical constants like G (but not including H0 and
ρ0). Also show the relationship between ρ0 and t0 for each case. Hint: consider
the Friedmann equation as an expression for ρ.

(d) [1 bonus point] To a very good approximation, we can regard the present-day
universe as having (for dynamical purposes) only matter and Λ. For this case,
show that we can exactly solve for the age of the universe as

H0t0 =
2

3
√
ΩΛ

sinh−1

√

ΩΛ

Ωm
(2)

For the present “concordance” values Ωm = 0.3 and ΩΛ = 0.7, evaluate3 t0 in
Gyr, compare to the Hubble time H−1

0 , and comment.

3If you calculator doesn’t have a sinh−1 key, one can show that sinh−1(x) = ln(x+
√

1 + x
2).


