
Astronomy 507 Spring 2014
Problem Set #3

Due in class: Friday, March 7
Total points: 10+2

1. The Einstein Static Universe As mentioned in class, Einstein initially invented the
Cosmological constant in order to “fix” the dynamic nature of a homogeneous and
isotropic spacetime and to keep the universe static and non-expanding.

(a) [1 point] Consider the Friedmann equations with non-relativistic matter, a
(possibly) nonzero curvature term, and a cosmological constant. Given the den-
sity ρ0 of the universe (now constant in space and time), and assuming P = 0,
find the critical value Λc of the cosmological constant which makes the universe
static, so that ȧ = ä = 0. Since the scale factor is constant, a0 = 1 always. This
solution is called the Einstein static universe. Also show that in this model, we
must have k = +1, i.e. the universe is not only static but finite in size. Give an
expression for the curvature radius R0 in terms of Λc.

(b) [1 bonus point] Now consider an Einstein static universe in which there is
a small perturbation to the scale factor, a = 1 + ǫ, with ǫ ≪ 1. Expand the
Friedmann acceleration equation to first order in ǫ. Show that the solution has
ǫ growing exponentially with time, and find the growth timescale.

What does this result imply for the static universe?

2. The Cosmological Constant and Everyday Life. With Λ, the laws of gravity change,
even in the Newtonian limit. Poisson’s equation becomes

−∇ · ~g = ∇2φ = 4πGρ − Λc2 (1)

(a) [1 point] Assume spherical symmetry, so that φ = φ(r) and ~g = g(r)r̂. Show
that in empty space (ρ = 0), the gravitational acceleration ~gΛ = −∇φΛ on a
particle at ~r is nonzero, repulsive, and linear proportional to r!

Explain why a repulsion a physically reasonable result. Since there is no matter,
this repulsion is attributed to the vacuum itself, and is what is meant in popular
press discussion of cosmic “antigravity.”

(b) [1 point] Since eq. (1) does not agree with the Newtonian limit, we might
expect trouble even within the dynamics of the solar system. To investigate
this, consider the orbit of the Earth around the Sun. Find the ratio gΛ/gNewt of
the magnitudes of the cosmological constant’s repulsive acceleration gΛ the usual
attractive acceleration gNewt. You may take the Earth’s orbit to be circular, with
radius r. Show that the ratio can be written
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where vc is the Earth’s circular speed.

Evaluate gΛ/gNewt numerically, and comment on the size of the effect Λ has, and
the use of solar system results to constrain Λ.
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3. Evidence for Acceleration: Luminosity Distances.

(a) [1 point] In class we saw that a standard candle, emitting at cosmic epoch
(t1, r1) and detected here at (t0, 0) has a cosmic luminosity distance

dL =
Sκ(r1)

a(t1)
(3)

For the case of a flat universe (κ = 0), eliminate r1 to show that dL is purely a
function of the emission epoch:
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You may ignore the contribution from radiation.

(b) [1 point] Show that to first order in z, dL(z) gives the usual Hubble’s law
expression for distance in a Newtonian cosmology.

Then going to second order in z, show that the luminosity distance is sensitive
to–and thus measures–the quantity Ωm − 2ΩΛ. Sketch a plot of ΩΛ vs Ωm, and
draw contours with different values of Ωm − 2ΩΛ. The compare with ΩΛ vs
Ωm plots shown in class, and comment on the shape of the supernova contours.
Hint: note that in the ΩΛ vs Ωm plane, most points are not flat universes, so
you should keep the curvature term in H(z) when calculating dL.

Finally, find the (ΩΛ,Ωm) combinations that give a coasting universe with ä = 0.
On your sketch, draw a line separating universes that today are accelerating vs
those that are decelerating.

(c) [1 point] Find the exact expression for dL(z) for a flat universe filled with a
single substance having an equation of state with constant w.

Use this general result to find the expression for dL(z) in an Einstein-de Sitter
universe with Ωm = 1. Then find dL(z) for a flat universe that has no acceleration
(w = −1/3) and finally for a universe with ΩΛ = 1 and Ωm = 0.

Compare the results at z = 0.1, 1, 10? Comment on the implications for how
these be distinguished observationally.

4. Cosmic Acceleration. Supernova luminosity distance data seem to require and accel-
erating universe. We now explore the consequences of this result.

(a) [1 point] In class we considered a universe with a single component ρw with
equation of state parameter P = wρ, with w a constant. We saw that for such
a universe to accelerate, it is necessary (but not sufficient!) that w < −1/3.

Now consider a universe possibly like ours, with both this dark energy, but
also matter, with density parameters Ωw = 0.7 and Ωm = 0.3 (you may ignore
curvature and radiation). Explain why the dark energy state value w < −1/3
condition is not sufficient for acceleration in such a universe. Then find the
limit on w which will allow acceleration in such a universe; you should find that
the revised limit makes w more negative. Does your result rule out or allow a
cosmological constant?
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(b) [1 bonus point] In the case of a cosmological constant, an instructive diagram
plots ΩΛ versus Ωm. In such a plot, there is region for ΩΛ > 1 which extends an
increasing distance from the ΩΛ axis. This region is often given the provocative
label, “no big bang.” To make sense of this, consider a point in this region.
Show that the Friedmann equation does indeed imply that for such a universe,
the singularity a = 0 can never be achieved. Hint: pick a simple (Ωm,ΩΛ) pair
from this region, and remember that in general Ω0 6= 1 in this region.

5. The Dark Energy Survey. To get a better handle on Dark Energy, a large effort at
Illinois (and elsewhere) is focused on the Dark Energy Survey (DES).

(a) [1 point] One goal of the DES is to measure the luminosity distances to just
under 2000 Type Ia supernovae in the redshift range 0.3 < z < 0.75; this will
become the recordholder for the largest such sample. Consider a set of typical
DES Type Ia supernovae all at z ≈ 0.5. Following the result in part (b) of
Problem 3, find the ratio of matter- and Λ-dominated luminosity distances at
this redshift.

A typical distance measure (“distance modulus”) m = 5 log10(dL/10 pc) can be
determined to an accuracy of δm ≃ 0.15 magnitudes. Can one supernova solidly
distinguish the matter-only, no-acceleration and Λ-only cases? Will it be possible
to distinguish between the w = −0.9 and w = −1 cases?

(b) [1 point] A major goal of the DES is to discover and measure the masses of all
galaxy clusters in a Ω = 4000 square degree region, out to a redshift zmax = 1.3.
The survey will this report the number N(z) of clusters as a function of redshift
out to this large distance. Note that this is somewhat like your exercise in
Problem Set 1 of finding galaxies out to a limiting redshift.

The number of observed clusters evolves as a function of redshift. Part of this is
due to the fact that the cluster number density itself evolves as structures grow;
we will return to this effect later. For now, we will focus on the fact that even if
clusters have a constant comoving density, the discovery function N(z) changes
simply due to the changing cosmic volume per redshift bin.

Compute the cosmic comoving volume change per unit redshift and solid angle,
d2Vcom/dz dΩ, for a FLRW universe. Show that the result can be written as

d2Vcom

dz dΩ
=
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where dL is the luminosity distance.

(c) [1 point] We immediately see that the comoving volume depends on cosmology
manifestly through H(z) as well as through dL. For the three universes in Prob-
lem 3(b), compare the comoving volume in the survey solid angle ∆ΩDES ≃ 1 sr
and a redshift bin ∆z = 0.1 centered on z = 1. If the comoving cluster density
at these redshifts is ncluster ∼ 3 × 10−6 Mpc−3, what should be the difference in
the observed number Nobs of clusters in these two cosmologies? Given that real
cluster samples will have statistical fluctuations (δNstat ∼

√
Nobs), could DES

distinguish these cases?


