
Astronomy 507 Spring 2014
Problem Set #5

Due in class: Friday, April 11
Total points: 10+2

1. Hot Relics: Neutrinos. Assume that the known neutrino species (e, µ, τ) have masses
such that m≪ 1 MeV, but m≫ T0.

(a) [1 point] In class we considered cold relics, for which Tf ≪ m. Neutrinos,
however, are hot relics. Consider a fermionic species ψ that is relativistic, so
that Tf ≫ m, that has µψ = 0, and that has a number gψ of internal degrees
of freedom. Find the thermodynamic equilibrium (thermal) abundance Yeq =
nψ/nγ .

Comment on how Yeq depends (or does not depend!) on the freezeout tempera-
ture (always assuming the species remains relativistic at freezeout).

(b) [1 point] For all species of neutrinos, the annihilation cross section is of the
same order as the n ↔ p cross section mentioned in class: σann ≃ σ0(E/me)

2,
where σ0 ≃ 2× 10−44 cm2. Find an expression for 〈σv〉ann as a function of T .

(c) [1 point] Using the result from (b), calculate the neutrino freezeout tem-
perature Tf . If each species i has mass mi, find its present relic abundance
Yi = nνi/nγ (assuming it is non-relativistic today, mν ≫ T0).

(d) [1 bonus point] Show that today, Tν/Tγ = (4/11)1/3. To do this, assume that
neutrino freezeout occurs entirely before any e± annihilation. This means that
there is no energy (heat) exchange between neutrinos and the electromagnetic
plasma during e± pair annihilation, and thus comoving neutrino entropy Sν =
sνa

3 stays the same before and after. Show that this implies Tν ∝ 1/a.

Then consider the comoving entropy SEM = a3sEM in relativistic electromag-
netic particles. Well before annihilation, these are γ and e± pairs, and after only
γ. Equate SEM well before annihilation and well after annihilation, with pho-
ton and neutrino temperatures (Ti, Tν,i) and (Tf , Tν,f ). Show that the neutrino
temperature is related to photon temperature by
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Finally, note that before neutrino decoupling, Tν = T . Show trivially that this
means that after pair annihilation, Tν = (4/11)1/3T .

(e) [1 point] Use the result from (c) to show that the (very generous) condition
Ων ≤ 1 corresponds to a limit on neutrino mass, which you should find to be
about

∑

neutrinos

mi <∼ 50 eV (2)

Note: to get the right value you have to use the fact that today, Tν/Tγ =
(4/11)1/3.

How does this compare to Particle Data Group constraints on neutrino masses?
(See links from course page, and go to the “Neutrino Properties entry under the
Leptons heading of “Particle Listings.”)
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2. Observational Requirements for Inflation: Cosmic e-foldings.

(a) [1 point] Imagine that we have information which tells us that the universe
pass through an cosmic epoch in either the radiation or matter eras. It follows
that the universe didn’t recollapse or go to zero density soon thereafter, and that
we have nearly flat universe today, so that the curvature then must have been
small. Given some epoch z, and the current limits ‖Ωκ,0‖ ≡ ‖Ω0 − 1‖ ≤ 0.01,
find and expression for the limits on the curvature parameter ‖Ωκ‖ ≡ ‖Ω(z)−1‖.
Note that the results are different depending on whether the epoch is matter- or
radiation-dominated.

One way to state the flatness problem is that “generically” one expects the
curvature term comparable to the others: ‖Ω − 1‖ ∼ 1, while you have found
‖Ω−1‖ ≪ 1. Use your result to deduce the required number Nmin of inflationary
e-foldings prior to the epoch z in order to leave it as flat as you have required.
To do this, assume that prior to inflation, the generic condition ‖Ω − 1‖ ∼ 1
held. Then you can calculate how much the curvature would need to be inflated
to meet some observed bound on ‖Ω− 1‖.

(b) [1 point] Apply your result from (a) to find Nmin as implied by these cosmic
epochs: recombination, BBN, the “Fermilab era” when T ∼ ETevatron = 1 TeV,
the GUT era ∼ 1015 GeV, and the Planck epoch.

(c) [1 bonus point] (Following Liddle & Lyth 3.5) If the universe underwent a
GUT transition T ∼ 1015 GeV), it is expected that one magnetic monopole (m ∼
1015 GeV) was created per Hubble volume. In the absence of inflation, compute
the relic mass density of monopoles today; you should get an uncomfortably large
number. Using the limit ΩMonopole,0 <∼ 10−6 (Parker bound), compute require
the number of e-foldings of inflation needed to respect this bound. Compare
your result to those above, and comment.

3. Scalar Field Dynamics. A classical and spatially homogeneous scalar field φ which
only interacts with itself (via a potential V ) and with gravity has an equation of
motion in a FRW universe given by

φ̈+ 3Hφ̇+ dV/dφ = 0 (3)

(a) [1 point] In a non-expanding universe, show that the equation of motion implies
that ρφ = φ̇2/2 + V (φ) is a constant.

Find an expression for ρ̇φ in an expanding universe, and interpret it physically.

(b) [1 point] Show that if the kinetic term dominates the φ energy density (i.e., if
V is negligible), ρφ ∝ a−6. Also find the value of wφ in this case.

If the kinetic term in ρφ not only dominates V but also the rest of the energy
density in the universe (“kination”), go on to find the time evolution φ(t).

It is not known if the universe ever underwent such a phase. Comment on why
such a phase is unsuitable for inflation.
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4. Slow-Roll Conditions.

(a) [1 point] Show that the slow-roll requirements that φ̇2/2 ≪ V (φ) and φ̈≪ 3Hφ̇
are equivalent to the statements that
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where η here is neither the baryon-to-photon ratio nor conformal time! Also, here
and throughout, we follow Liddle & Lyth in using the “reduced Planck mass”
mPl =MPl/

√
8π =

√

h̄c/8πG, so that, e.g., Friedmann reads H2 = ρ/3m2
Pl.

(b) [1 point] Show that if both ǫ and η are strict constants, independent of φ, this
uniquely specifies the inflation potential to be of the form

V (φ) = V0e
φ/µ (6)

Find the value of the energy scale µ in terms of ǫ, η, and physical constants.


