
Astronomy 507 Spring 2014
Problem Set #6: Structure Formation

Due in class: Wednesday, April 30
Total points: 10+3

1. [1 bonus point] Density Contrasts: Numerical Values. Density contrasts are of
course dimensionless, but it is still a good idea to get a feel for the numbers. Estimate
the present-day density contrast δ of:

• a typical galaxy cluster

• our location in the Milky Way

• the interstellar medium of the Milky Way

• the best vacuum that can be created in a terrestrial laboratory

• yourself

Comment on these results.

2. Linear Perturbations: Baryon Oscillations and the CMB.

(a) [1 point] Consider the universe in the matter-dominated era, and focus on the
dark matter and baryon fluids. Show that in the linear regime, the baryonic
density contrast δb of comoving wavenumber k obeys the evolution equation
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δb = 4πGρ(Ωmδm +Ωbδb) ≈ 4πGρΩmδm (1)

where it is assumed that Ωtot = 1. This is a fairly trivial setup for the rest of
the problem.

Go on to consider modes with large wavenumbers kcs/a ≫ 4πGρΩm. Show
that this corresponds to scales below the comoving Hubble length. Write the
evolution equation for δb for such modes.

(b) [1 point] For such large wavenumber modes, argue that the solutions should
have an oscillatory character. To see what is going on, let us simplify matters
and consider the case of a sound speed cs which is constant in time.

Anticipating an oscillatory solution, write δb(t) = A(t) eiθ(t), with A and θ both
real. Plug this form into the evolution equation you found in (b). The result will
be complex and thus really is a set of two equations, one real and one complex.

For a first approximation, assume A(t) is slowly varying compared to θ (i.e., the
solution is mostly just an oscillation). So take A to be a constant, and then the
real equation only contains first derivatives, and amounts to a first approximation
to the solution. Show that the real part of the equation is satisfied if

θ(t) =

∫

kcs
dt

a
= kcsη = kdhor,s (2)

where η is the conformal time.
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Then refine your solution by keeping θ(t) as you just found, but now let A vary

with time. In this case, show that the imaginary equation gives A ∝ 1/a
√

θ̇ =
1/
√
acsk. This means that the solution now becomes δb(t) = D/

√
acsk eiθ(t),

with D a constant.

This type of solution is the first step in the WKB approximation; more refined
approximations can be made extremely accurate.

Explain why dhor,s = csη is known as the “sound horizon.” How do dhor,s and θ
scale with cosmic time t, always assuming a matter-dominated universe?

(c) [1 point] Examine the physical nature of the solution δb ∼ eiθ as a function of
k and of t. For a fixed length scale (fixed k), when is the first compression? The
first rarefaction? At a fixed epoch t (or η), what sets the scale which has just
compressed for the first time? What is the connection between this scale and
those which are at other extrema of compression or rarefaction?

(d) [1 point] Prior to recombination, radiation pressure dominates the pressure
the baryons feel, and thus the sound speed. By using the different radiation
and matter evolution with a, show that a fluid with radiation and pressureless
matter has
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(as always in units where the speed of light is c = 1). What is c2s deeply in the
radiation-dominated phase? at matter-radiation equality? At decoupling?

(e) [1 point] Finally, combine the last two parts to arrive at the comoving length
scale of the largest perturbations in the CMB. How does this compare to the
comoving horizon size at recombination?

In light of your results, how can you understand the overall behavior of CMB
fluctuations as a function of angular scale?

3. Nonlinear Perturbations: The Spherical Collapse Model. Although it is in general
impossible to solve analytically for the full nonlinear evolution, for the idealized special
case of a spherically symmetric perturbation a full solution is possible. The trick is
that a spherically symmetric perturbation with uniform density evolves according to
the same equations as a closed (or open) Friedmann universe–one may legitimately
think of such a region as an independent “subuniverse.”

(a) [1 bonus point] Consider a uniform matter-dominated overdensity. For such
a region, the radius r(t) = a(t)R evolves with a(t) a solution to the Friedmann
equation for a closed universe. An analytic solution for a(t) is now available, but
there is a parametric solution, in which a and t are related by an auxiliary quan-
tity, the “development angle” θ. For a bonus point, start with the Friedmann
equation and derive the solution

a(θ) = A(1− cos θ) (4)

t(θ) = B(θ − sin θ) (5)

(b) [1 point] Interpret the results from part (a) physically. Describe the evolution
of an overdensity in the expanding universe.
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What is the value of θ, a, and t at maximum expansion (also known as “turnaround”)?
At final collapse? Write A in terms of amax and B in terms of tcoll.

(c) [1 bonus point] Show that for small t, expanding both a and t to next-to-
leading order gives

a ≃
A
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(d) [1 point] Now we compare the overdensity evolution to that of a flat, matter-
dominated universe (Einstein-de Sitter). In particular, consider such a “back-
ground” universe which initially has (essentially) the same density as the per-
turbed region we have introduced, and thus initially the same expansion rate.
Call the scale factor in this background universe abg. Show that, compared to
this reference universe, the overdensity has a density contrast

δ(t) =

(

abg
a

)3

− 1 (7)

and explain why δ(t) ≥ 0 for all times (until complete collapse of the overden-
sity!).

(e) [1 point] Use the results from parts (b), (c), and (d) to show that for small t,

δ(t) ≈ δlin(t) =
3

20

(

12πt

tcoll

)2/3

(8)

This is the first-order approximation to the density contrast. Compare this to
our in-class solution to the linearized evolution equation for δ, and comment.

(f) [1 point] A major payoff of this exercise is that we now have a way to relate
the behavior of the linearized density contrast to the full nonlinear contrast for
any time t ≤ tcoll. To see how this goes, first find the true value for 1 + δ(tmax)
at maximum expansion. Compare this result to that of the linearized density
contrast at the same time, 1 + δlin(tmax).

(g) [1 point] After turnaround, the spherical model formally gives a collapse to an
infinite density at tcoll. In practice, what really happens is that the structure
would virialize and then maintain a constant radius consistent with virial equi-
librium. Show that the virial theorem gives that avirial = amax/2. Using this as
the overdensity scale factor at collapse, find the true value of δ(tcoll) at collapse.
Compare this to the linearized value for δ(tcoll) at collapse.

Based on your result, comment on why people often define a collapsed object in
the universe today to be a region which encloses an overdensity δ ∼ 180 − 200
(the criterion differs slightly from author to author).

Also based on your result, comment on the significance of perturbations which
today have δlin ≥ δc = 1.69.


