
Astronomy 507 Spring 2014
Problem Set #7: The Final Frontier

This Problem Set takes the place of the final exam, and is open book and open notes, and

open web. You may not collaborate and your work must be entirely your own.

Due on Compass, or to the instructor, on or before: Thursday, May 15, 4:30pm
Total points: 10+1

1. Redshift Evolution in Real Time as a Probe of Cosmic Expansion History. In class we
showed that redshifts are related to the cosmic scale factor at photon emission and
observation via

z =
a(tobs)

a(tem)
− 1 (1)

where aobs = 1 for present-epoch observations of interest to us. One usually thinks of
the redshift of an object at fixed comoving distance r as a fixed measure equivalent to
r, and/or a fixed measure of the emission epoch. While this is true for most practical
purposes, it is not strictly correct. Since the 1960’s work of Alan Sandage1 and
UIUC’s own George McVittie2 , it has been known that the time change of redshifts
pose a potentially powerful test of cosmology generally and of cosmic acceleration
(and hence dark energy) particularly.

(a) [1 point] Starting with eq. (1), derive the McVittie equation for the observed
evolution of redshift for an object

dz

dtobs
= (1 + z)H(tobs) −H(tem) = (1 + z)

[

1 −
1

1 + z

H(tem)

H0

]

1

tH,0
(2)

where H(t) is the expansion rate evaluated at (and observed at) time t.

(b) [1 point] Show that dz/dtobs = 0 for an “coasting” universe which has no
acceleration, i.e., an expansion with ä = 0. This implies that dz/dtobs is a probe
of cosmic acceleration/deceleration.

For a matter-only universe show that dz/dtobs < 0, while for a Λ-dominated
universe show that dz/dtobs > 0. Interpret these results physically.

(c) [1 point] If we monitor the spectrum of an object at fixed comoving distance
over a time δt, then the wavelength λobs = (1+z)λem of spectral feature will drift
by a fractional amount δλobs/λobs = λem/λobs dz/dtobs δt = (1+z)−1dz/dtobs δt,
equivalent to a Doppler velocity drift of δv = cδz/(1 + z).

Sensitive spectroscopic techniques have been developed to find planets via the
small change in the Doppler shift of the parent star due to the gravitational

1Sandage, A. 1962, ApJ, 136, 319. This paper also calculates the time evolution of the luminosity of a
source at fixed comoving distance. I leave it to the reader to see why this would be an even more difficult
thing to measure than the time-change of redshift.

2McVittie, G. C. 1962 ApJ, 136, 334. Somewhat oddly, this is a separately-authored appendix to the
Sandage (1962) paper, in which McVittie extends Sandage’s analysis for general combinations of Ωm and
ΩΛ.
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influence of the planet. Current methods can detect velocity changes down to
about δvobs ∼ 1 m/s over timescales as long as δt ∼ 10 yr.

Using the above results, find the Doppler velocity drift of a z = 3 object over
a timescale of δt = 10 yr, in a Ωm = 0.3 and ΩΛ = 0.7 cosmology. Can this be
observed with current techniques? What complications might make this mea-
surement and its interpretation difficult? (Hint: real objects at z = 3 are not
point sources, and do have internal motions.) How might some of these difficul-
ties be overcome?

Such an observational campaign is sometimes known as the Sandage-Loeb3 test,
which has been known of for decades (thanks to Sandage and McVittie) but has
received a revival of accelerated interest recently4.

(d) [1 bonus point] Imagine it is (or becomes) possible to make reliable measure-
ments of redshift drifts over a substantial redshift range, say z = 0.5−3. Explain
how such measurements could be used to test cosmology in general, and dark
energy models in particular.

2. Baryon Acoustic Oscillations

(a) [1 point] Explain qualitatively what BAO lengthscale is, and why it is a stan-
dard ruler.

(b) [1 point] Write an expression for the BAO comoving lengthscale rbao. Hint:

it involves an integral of the cosmic soundspeed cs. Briefly explain your choices
for the bounds of integration.

(c) [1 point] Use your expression from part (b) to evaluate the BAO scale using
the approximation cs ≈ c/

√
3, and express your answer in Mpc.

Compare this scale to that at which structures are nonlinear today, and comment
on the significance of the mismatch.

(d) [1 point] Imagine we observe a large matter overdensity at redshift z. Along
the same sightline, the BAO feature should appear as overdensities displaced in
redshift by ±∆z.

Find an expression for ∆z; you may assume that ∆z ≪ z.

How can we test that the features detected this way are really due to BAO?

(e) [1 point] Briefly explain what cosmological information we gain if we measure
∆z in part (d) for objects at many redshifts z. Be sure to indicate why it would
be useful to do this measurement at multiple z.

3. The Cosmic Star-Formation Rate. Measuring and understanding the history of cosmic
star formation is a major topic in cosmology today. As discussed in class, the cosmic
star formation rate ρ̇⋆(z) is now fairly well-determined out to redshifts z ∼ 2.

(a) [1 point] A famous evaluation of the cosmic star formation rate appears in
Hopkins & Beacom (2006, ApJ 451, 142), linked in the final lecture webpage.

3Loeb, A. 1998, ApJL, 499, L111
4See, e.g., Lake, K. 1981, ApJ, 247, 17; Lake, K. 2007, PRD, 76, 063508; Balbi, A., & Quercellini, C.

2007, MNRAS, 382, 1623; Uzan, J.-P., Bernardeau, F., & Mellier, Y. 2008, PRD, 77, 021301;
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Consult Hopkins & Beacom’s Figure 1 and the surrounding discussion, and find
the value ρ̇⋆(0) of the cosmic star-formation rate today, i.e., at z = 0. To see if
this makes sense, consider the quantity ψ̄ = ρ̇⋆(0)/ngal, where ngal is a measure
of the number density of galaxies at z = 0, for example as you found in Problem
Set 1.

Explain why ψ̄ should be a measure of the average star-formation rate of a typical
galaxy today.

Then evaluate ψ̄ using the Hopkins & Beacom value for ρ̇⋆(0), and ngal you found
in Problem Set 1 (or from class notes). Compare your result to the Milky Way
star-formation rate ψMW ≃ 1 M⊙/yr and comment.

(b) [1 point] Out to redshift z ∼ 1, the cosmic star-formation rate grows roughly as
ρ̇⋆ ∝ (1+z)3, so that ρ̇⋆(z) = (1+z)3 ρ̇⋆(0). Assuming this dependence, integrate
this rate over cosmic time, i.e., find ρsf =

∫ t0
t(z=1) ρ̇⋆ dt =

∫ 1
a(z=1) ρ̇⋆ da/(aH), using

the expansion rate for a matter-dominated universe with Ωm = 0.3. Also find
Ωsf . What physically should ρsf and Ωsf measure?

Compare your results with the baryon density parameter Ωbaryon, and the density
parameter for stellar luminous matter Ωlum found in Problem Set 1 and in class
notes. Comment on the results.


