Today's ASTR 507 Cosmo Café Special: Relativisitic Gastrophysics!

- Get a gut feeling for cosmic geometry!
- All three tasty possibilities available:
\triangleright flat
\triangleright positively curved
\triangleright negatively curved
- Try 'em all!

Bon appetit!

> Astro 507
> Lecture 10
> Feb. 12, 2014

Announcements:

- Preflight 2 due Friday, 9am
I. Discussion (public)
II. Reading response

Last time: Relativistic Cosmology
cosmic spacetimes: maximally symmetric
Q: fundamental observers?
Q: comoving coordinates?
Q : cosmic time?
oday:

- cosmic geometry
- Friedmann-Lemaître-Robertson-Walker (FLRW) metric
- physics in a FLRW universe

Cosmological Principle and Cosmic Spacetime Executive Summary

Cosmo Principle \rightarrow at any time, space is maximally symmetric

- strongly restricts allowed spacetime structure
- there exist a set of fundamental observers (FOs)
(or "frames" or "coordinate systems")
who see U as homogenous and isotropic
- FOs "ride on" or are at rest w.r.t. comoving coordinates which don't change with expansion
but do of course physically move apart
- FO clocks all tick at same rate, measure cosmic time t

Note: in a generic spacetime, not possible to "synchronize clocks" in this way

Curvature

maximal symmetry requires that Universe spatial " 3 -volume" is a "space of constant curvature"
at any time t : cosmic curvature is a length $\mathcal{R}(t)$

- today: $\mathcal{R}\left(t_{0}\right) \equiv R$
- Q: dependence on scale factor?

For the relativists: max symmetry means spatial curvature tensor must take the form

$$
\begin{equation*}
R_{i j k \ell}^{(3)}=\frac{\kappa}{\mathcal{R}(t)^{2}}\left(h_{i k} h_{j l}-h_{j k} h_{i l}\right) \tag{1}
\end{equation*}
$$

where $\kappa=-1,0$, or +1
and h is the spatial part of metric g
Note: the curvature scalar is really one single number K
but for $K \neq 0$ one can identify a sign $\kappa \equiv K /\|K\|$ and lengthscale $\mathcal{R}^{2} \equiv 1 /\|K\|$

Spaces of Constant Curvature

Amazing mathematical result:
despite enormous constraints of maximal symmetry GR does not demand cosmic space to be flat (Euclidean) as assumed in pre-relativity and special relativity

GR allows three classes of cosmic spatial geometry each of which is a space of constant (or zero) curvature

- positive curvature \rightarrow hyper-spherical
- negative curvature \rightarrow hyperbolic
- zero curvature \rightarrow flat (Euclidean)
www: cartoons

All of these are allowed by GR and maximal symmetry but our universe can have only one of them
Q : how do we know which of these our U has "chosen"?

Positive Curvature: A (Hyper-)Spherical Universe

to get an intuition: consider ordinary sphere ("2-sphere")
using coordinates in Euclidean space ("embedding")
sphere defined by

$$
\begin{equation*}
(x, y, z) \in x^{2}+y^{2}+z^{2}=R^{2}=\text { const } \tag{2}
\end{equation*}
$$

Coordinates on the sphere:

- usual spherical coords: center, origin outside of the space
- we will use coordinates with origin in the space more convenient, closer to the physics Q : why?
origin: at north pole $(x, y, z)=(0,0,+R)$
r distance from z-axis
$r \Leftrightarrow$ latitudes
$r^{2}=x^{2}+y^{2}=R^{2}-z^{2}$
θ angle from x axis $\theta \rightarrow$ Iongitude

$R \chi$

arclength on sphere from pole χ is usual spherical polar angle

2-sphere metric:
in 3-D embedding space: $d \ell^{2}=d x^{2}+d y^{2}+d z^{2}=d r^{2}+r^{2} d \theta^{2}+d z^{2}$ but points, intervals constrained to lie on sphere:

$$
\begin{aligned}
& R^{2}=r^{2}+z^{2}=\text { const } \\
& d\left(R^{2}\right)=0=x d x+y d y+z d z=r d r+z d z
\end{aligned}
$$

so $d z=-r d r / z \rightarrow$ can eliminate z
thus in polar coords with origin at N Pole

$$
\begin{align*}
d \ell^{2} & =d r^{2}+r^{2} d \theta^{2}+d z^{2}=\left(1+\frac{r^{2}}{R^{2}-r^{2}}\right) d r^{2}+r^{2} d \theta^{2} \tag{3}\\
& =\left(\frac{R^{2}}{R^{2}-r^{2}}\right) d r^{2}+r^{2} d \theta^{2}=\frac{d r^{2}}{1-r^{2} / R^{2}}+r^{2} d \theta^{2} \tag{4}
\end{align*}
$$

not the Euclidean expression!
∞ curved space: curvature $R^{2}=$ const !

Exploring Sphereland

coordinates for (2-D) observers on sphere, centered at N Pole:

$$
d \ell^{2}=d \ell_{r}^{2}+d \ell_{\theta}^{2}=\frac{d r^{2}}{1-r^{2} / R^{2}}+r^{2} d \theta^{2}=R^{2} d \chi^{2}+R^{2} \sin ^{2} \chi d \theta^{2}
$$

N Pole inhabitant (2-Santa) measures radial distance from home: $d \ell_{r}=d r / \sqrt{1-r^{2} / R^{2}} \equiv R d \chi$
\rightarrow radius is $\ell_{r}=R \sin ^{-1}(r / R) \equiv R \chi$

Example: construct a circle

locus of points at same radius ℓ_{r}

- circumference $d C=d \ell_{\theta}=r d \theta=R \sin \chi d \theta$
$\rightarrow C=2 \pi R \sin \chi<2 \pi \ell_{r}$
- area $d A=d \ell_{r} d \ell_{\theta}=R^{2} \sin \chi d \chi d \theta$
$\rightarrow A=2 \pi R^{2}(1-\cos \chi)<\pi \ell_{r}^{2}$
Q : why are these right?

3-D Life in a 4-D Sphere

generalize to 3-D "surface" of sphere in 4-D space ("3-sphere"), constant positive curvature R : $3-\mathrm{D}$ spherical coordinates centered on "N pole"
spatial line element

$$
\begin{equation*}
d \ell^{2}=\frac{d r^{2}}{1-r^{2} / R^{2}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2} \tag{5}
\end{equation*}
$$

- sky still has solid angle $d \Omega=\sin \theta d \theta d \pi, \int d \Omega=4 \pi$
- radial (proper) distance $\Delta \ell_{r}=R \sin ^{-1}(r / R) \equiv R \chi$
- so we have found, for $\kappa=+1$,

RW metric has $f(r)=1 /\left(1-r^{2} / R^{2}\right)$

Q: guesses for zero, negative curvature metrics?

Friedmann-Lemaître-Robertson-Walker Metric

Robertson \& Walker:
maximal symmetry imposes metric form
Robertson-Walker line element (in my favorite units, coords):

$$
d s^{2}=d t^{2}-a(t)^{2}\left(\frac{d r^{2}}{1-\kappa r^{2} / R^{2}}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right)
$$

where cosmic geometry encoded via κ :

$$
\kappa=\left\{\begin{array}{cc}
+1 & \text { pos curv: "spherical" } \tag{6}\\
0 & \text { flat: "Euclidean" } \\
-1 & \text { neg curv: "hyperbolic" }
\end{array}\right.
$$

Friedmann-Lemaître-Robertson-Walker Cosmology

Friedmann \& Lemaître: solve GR dynamics (Einstein equation) for stress-energy of "perfect fluid" (no dissipation)

The Einstein Equation and Robertson-Walker

Einstein eq: $R_{\mu \nu}-1 / 2 R g_{\mu \nu}=8 \pi G T_{\mu \nu}$ derivatives in Einstein eq come from curvature tensor $R_{\mu \nu}$ \rightarrow schematically: " $R \sim \partial^{2} g \sim G \rho$ " - like Newtonian Poisson eq but the only undetermined function in the metric is the scale factor a, which only depends on t : so: Einstein eqs \rightarrow ODEs which set evolution of $a(t)$ \Rightarrow these are the Friedmann equations! and: in RW metric, local energy conservation $\nabla_{\nu} T^{\mu \nu}=0$
$\stackrel{\rightharpoonup}{N} \Rightarrow$ gives 1st Law: $d\left(\rho a^{3}\right)=-p d(a)^{3}$
More detail in today's Director's Cut Extras

Life in a FRLW Universe

FLRW metric + Friedmann eqs for $a(t)$
\rightarrow all you need to calculate anything particle motions, fluid evolution, observables...

Excellent first example: Propagation of light

We want to know

- photon path through spacetime
- evolution of photon λ, E during propagation
- detected redshift

Q: how to calculate these?
$\stackrel{\iota}{\omega}$ Q: relevant equations?
Q: coordinate choices?

Worked Example: Photon Propagation

photon path: radial null trajectory $d s=0$ (Fermat)

* emitted at $r_{\text {em, }}$, tem
\star observed at $r_{\text {obs }}=0, t_{\text {obs }}$
for FOs at $r_{\text {em }}$ and $r_{\text {obs }}=0$, any $t_{\text {em }}$ and $t_{\text {obs }}$ pairs have

$$
\begin{aligned}
\int_{t \mathrm{tem}}^{t_{\mathrm{obs}}} \frac{d t}{a(t)}= & \int_{0}^{r e m} \frac{d r}{\sqrt{1-\kappa r^{2} / R^{2}}} \\
\text { time-dep } & \text { time-indep }
\end{aligned}
$$

Since RHS is time-independent Q : why?
then any two pairs of emission/observation events
between comoving points $r \rightarrow 0$ must have

$$
\begin{equation*}
\int_{t_{\mathrm{em}, 1}}^{t_{\mathrm{obs}, 1}} \frac{d t}{a(t)}=\int_{t_{\mathrm{em}, 2}}^{t_{\mathrm{obs}, 2}} \frac{d t}{a(t)} \tag{7}
\end{equation*}
$$

consider two sequential emission events, lagged by $\delta t_{\text {em }}$ subsequently seen as sequential observation events with $\delta t_{\text {obs }}$
time-independence of propagation integral means

$$
\int_{t_{\mathrm{em}}}^{t_{\mathrm{obs}}} \frac{d t}{a(t)}=\int_{t_{\mathrm{em}}+\delta t_{\mathrm{em}}}^{t_{\mathrm{obs}}+\delta t_{\mathrm{obs}}} \frac{d t}{a(t)}
$$

rearranging...

$$
\int_{t_{\mathrm{em}}}^{t_{\mathrm{em}}+\delta t_{\mathrm{em}}} \frac{d t}{a(t)}=\int_{t_{\mathrm{obs}}}^{t_{\mathrm{obs}}+\delta t_{\mathrm{obs}}} \frac{d t}{a(t)}
$$

if δt small ($Q:$ compared to what?)
then $\delta t_{\mathrm{em}} / a\left(t_{\mathrm{em}}\right)=\delta t_{\mathrm{obs}} / a\left(t_{\mathrm{obs}}\right)$ and so

$$
\frac{\delta t_{\mathrm{obs}}}{\delta t_{\mathrm{em}}}=\frac{a\left(t_{\mathrm{obs}}\right)}{a\left(t_{\mathrm{em}}\right)}
$$

Q: observational implications?

Observational implications:

* for any pairs of photons

$$
\begin{aligned}
& \qquad \frac{\delta t_{\mathrm{obs}}}{\delta t_{\mathrm{em}}}=\frac{a\left(t_{\mathrm{obs}}\right)}{a\left(t_{\mathrm{em}}\right)}=\frac{1+z_{\mathrm{em}}}{1+z_{\mathrm{obs}}} \\
& \text { and since } a\left(t_{\mathrm{obs}}\right)>a\left(t_{\mathrm{em}}\right) \\
& \rightarrow \delta t_{\mathrm{obs}}>\delta t_{\mathrm{em}} \\
& \rightarrow \text { distant happenings appear in slow motion! } \\
& \rightarrow \text { time dilation! }
\end{aligned}
$$

cosmic time dilation recently observed!
Q: how would effect show up?
Q: why non-trivial to observationally confirm?
ん www: cosmic time dilation evidence

Director's Cut Extras For Relativists

Perfect fluid:

- "perfect" \rightarrow no dissipation (i.e., viscosity)
- stress-energy: given density, pressure fields ρ, p and 4 -velocity field $u_{\mu} \rightarrow(1,0,0,0)$ for FO

$$
\begin{align*}
T_{\mu \nu} & =\rho u_{\mu} u_{\nu}+p\left(g_{\mu \nu}-u_{\mu} u_{\nu}\right) \tag{8}\\
& =\operatorname{diag}(\rho, p, p, p)_{\mathrm{FO}} \tag{9}
\end{align*}
$$

Recall: stress-energy conservation is

$$
\begin{equation*}
\nabla_{\nu} T^{\mu \nu}=0 \tag{10}
\end{equation*}
$$

where ∇_{μ} is covariant derivative For RW metric, this becomes:

$$
\begin{equation*}
d\left(a^{3} \rho\right)=p d\left(a^{3}\right) \tag{11}
\end{equation*}
$$

1st Law of Thermodynamics!

Einstein equation

$$
\begin{equation*}
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G T_{\mu \nu} \tag{12}
\end{equation*}
$$

Given RW metric (orthogonal, max symmetric):

- Q: how many nonzero Einstein eqs generally? here?
- Q: what goes into $G_{\mu \nu}$? what will this be for RW metric?

Einstein eq:
$G_{\mu \nu}, T_{\mu \nu}$ symmetric 4×4 matrices $\rightarrow 10$ independent components in general, Einstein $\rightarrow 10$ equations
but cosmo principle demands: space-time terms $G_{0 i}=0$ and off-diagonal space-space $G_{i j}=0$ else pick out special direction \Rightarrow only diagonal terms nonzero and all 3 " p " equations same

Einstein \rightarrow two independent equations

$$
\begin{align*}
G_{00} & =3\left(\frac{\dot{a}}{a}\right)^{2}+\frac{3 \kappa}{R^{2} a^{2}} \tag{13}\\
& =8 \pi G T_{00}=8 \pi G \rho \tag{14}\\
G_{i i} & =6 \frac{\ddot{a}}{a}+3\left(\frac{\dot{a}}{a}\right)^{2}+\frac{3 \kappa}{R^{2} a^{2}} \tag{15}\\
& =8 \pi G T_{i i}=8 \pi G p \tag{16}
\end{align*}
$$

After rearrangement, these become the Friedmann "energy" and acceleration equations!

