
Astro 507

Lecture 12

Feb. 17, 2014

Announcements:

• Problem Set 2 due Friday

office hours: 3:10-4pm Thurs., or by appt

for problem 1: see also extras in todays notes

Today: last day of boot camp!

• cosmic distance measures

Last time: lifestyles in a Robertson-Walker universe

⊲ cosmic causality

⊲ particle horizon Q: what’s that? why important?
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Recap: Photon Propagation in FLRW

for a radial photon (i.e., coming to us)

dℓcom =
dr

√

1− κr2/R2
=

dt

a(t)
= dη

Why is η a “conformal” time?
0
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conformal transformation = angle-preserving

ds2 = a(η)2 (dη2 − dℓ2com) = a(η)2 × (Minkowski form)

preserves Minkowski “angles” in spacetime

→ lightcones keep straight slopes: dη/dℓcom = 1 on cone

compare photon trajectory in (t, ℓcom) plane:

at early times: light cone “slope” dt/dℓcom = a(t) ≪ 1

Q: what does this look like? why inconvenient?

www: light cones: (t, ℓcom) vs (η, ℓcom)plane
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Cosmic Distance Measures

More examples of how spacetime properties

impose relationships among observables

Warmup: Newtonian cosmology

another sanity check, limiting case

Q: validity range?

Consider Newtonian cosmo:

• given observed z, what is distance dNewt?

• Q: good for which z?

• Q: complications in full FLRW universe?
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“Newtonian Distance”

Newtonian cosmology:

• small speeds, weak gravity

ignore curvature

Hubble’s Law:

H0dNewt ≡ v ≃ cz (1)

applicability: z ≪ 1

solve:

dNewt =
c

H0
z = dH z

näıve distance is linear in z4



Distances and Relativity

Basic but crucial distinction, important to remember:

In Newtonian/pre-Relativity physics: space is absolute

• “distance” has unique, well-defined meaning:

⇒ Euclidean separation between points

• can think of as “intrinsic” to objects and points

In Special and General Relativity: space not absolute

• distance observer-dependent, not intrinsic to objects, events

• different well-defined measurements can lead to

different results for distance

In FLRW universe, “distance” not unique: answer depends on

• what you measure

• how you measure it
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Proper Distance

So far: have constructed comoving coordinates

which expand with Universe (“home” of FOs)

RW metric: encodes proper distance

i.e., physical separations as measured by metersticks/calipers:

⊲ in RW frame i.e., by comoving observers=FOs

⊲ at one fixed cosmic instant t

dℓ2prop = a(t)2dℓ2com = a(t)2
(

dr2

1− κr2/R2
+ r2dθ2 + r2 sin2 θdφ2

)

Can read off proper distances for small displacements

as measured by FOs at time t:

• dℓpropr = a(t) dℓcomr = a(t) dr/
√

1− κr2/R2

• dℓpropθ = a(t) dℓcomθ = a(t) rdθ

• dℓpropφ = a(t) dℓcomφ = a(t) r sin θdφ

Q: how to find distance for finite displacements?
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for finite displacements: integrate small ones

e.g., radial distance (at t) between r = 0 and r is

ℓpropr = a(t)ℓcomr = a(t)
∫ r

0
dζ/

√

1− κζ2/R2 (2)

Note: dℓpropr /dt = ȧ ℓcomr = H ℓpropr exactly!

→ i.e., at a fixed cosmic time t

proper distances increase exactly according to Hubble!

Q: what does this mean for points with ℓpropr > dH?

Q: is this a problem?

Q: how would you in practice measure ℓpropr for large r?
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Luminosity Distance

for a point source (unresolved), observables:

1. redshift z
2. flux (apparent brightness) Fobs = dEobs/dtobs dA
summed over all wavelengths: “bolometric”

input/assumption: “standard candle”

known rest-frame luminosity Lem = dEem/dtem

Goal: given std candle Lem, want to relate

observed zem and Fobs
⇒ find expression for luminosity distance

defined by Newtonian/Euclidean formula:

dL(zem) ≡

√

Fobs

4πLem
(3)

Q: effects in cosmological setting?

Q: calculation strategies? sanity check(s)?
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Strategy: start with observation, work back

Observation:

FO with telescope, area Adet

in time interval δtobs
measures total energy δEobs; avg photon energy ǫobs

observed flux (bolometric, λ-integrated) given by

δEobs = FobsAdetδtobs (4)

Fobs is rate of energy flow per unit area

as measured in observer frame

Q: what’s invariant/observer independent as signal propagates?9



Standard candle emitter:

luminosity Lem at aem, zem

with average photon energy ǫem

• choose rem = 0 as center

• light “cone” (sphere) today reaches us,

has present area Asph = 4πr2

r
Lem

Asphere r 2π= 4

photon counts are invariant

i.e., all agree on how many detector registers

Q: how to quantify photon number conservation?
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total photon counts through sphere at r:

δNobs =
FobsAsphδtobs

ǫobs
= 4πr2

Fobs

ǫobs
δtobs

r
Lem

Asphere r 2π= 4
total photon counts from source

δNem =
Lem

ǫobs
δtem

photon conservation: δNobs = δNem

Fobs =
ǫobs
ǫem

δtem

δtobs

Lem

4πr2
(5)

Q: and so?
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Fobs =
ǫobs
ǫem

δtem

δtobs

Lem

4πr2
(6)

• energy redshifting ǫobs = aemǫem

• time dilation δtobs = δtem/aem

So we have

Fobs = a2em
Lem

4πr2
=

Lem

4π(1 + z)2r2
(7)

Q: and so?
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Observed flux is

Fobs = a2em
Lem

4πr2
=

Lem

4π(1 + z)2r2
(8)

identify luminosity distance via Newtonian/Euclidean result:

dL ≡

√

Lem

4πFobs
(9)

and so

dL =
r

aem
= (1+ z) r

Q: why of practical observational interest?

Q: r unmeasured–how relate to observables?

Q: sanity checks? non-expanding? small z?

Q: why is dL 6= ℓcom?

Q: why is dL > r?

Q: what if measure spectrum Fν = dF/dν?
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luminosity distance: dL = (1+ z) r(z)

Note: relate r to emission redshift z via

trusty photon propagation eq:
∫ rem

0

dr
√

1− κr2/R2
=

∫ tobs

tem

dt

a(t)

=
∫ aobs

aem

da

aȧ
=
∫ aobs

aem

da

a2H(a)

=

∫ zem

0

dz

H(z)

where Friedmann gives H(z)

→ r and thus dL manifestly depends on cosmology

(i.e., cosmic geometry, parameters)

⋆ dL for SN Ia → cosmic acceleration!

Note: for alt radial variable χ

dL = (1+ z)/R/Sκ(χ)
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Extended Objects:
Angular Diameter Distance

if object resolved as extended source on sky, not point source

then new observable available:

⋆ angular size δθ

• and as usual, redshift z

and flux (apparent bolometric brightness) F

input/assumption: “standard ruler”

known rest-frame size: diameter Dem

r
δθ Dem

Goal: for std rulers, want to relate

observed z and δθ

Q: effects in cosmological setting?

Q: relevant equations? calculation strategies?

Q: sanity check(s)?
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To visualize, consider closed universe

• observer at r = 0

• a pair of radial photons

from edges of source

trace longitudes

x

y

z

r=0

r r

Dem

δθ

Invariant:

angular (longitude) separation δθ remains same

...while physical separation evolves, due to propagation

and cosmic expansion

At emission epoch, physical separation of photons

is standard ruler size Dem

but also related to δθ and r = rem via RW metric

Q: how?
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At emission epoch, standard ruler size Dem

at emission point r fixes angular separation δθ:

Dem = δℓ
prop,em
θ = aemδℓcomθ = aemrδθ

x

y

z

r=0

r r

Dem

δθ

But δθ remains fixed over propagation

so today we observe

δθ =
Dem

aemr

identify angular diameter distance

via Newtonian/Euclidean result:

dA ≡
Dem

δθ
(10)

and so

dA = aemr =
r

1 + z
=

Sκ(χ)

1 + z

1
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Angular diameter distance: dA = r(z)/(1 + z)

Q: why of practical observational interest?

Q: sanity checks?

Q: why is dA < r?

Q: what if resolve at different λ?

Note:

• dA depends on cosmological history via r(z)

• dA = a2emdL = dL/(1 + z)2

different measures!

but ratio is cosmology independent

Q: implications for CMB fluctuations?

www: WMAP1
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Director’s Cut Extras: Surface Brightness
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Extended Objects Part Deux:
Surface Brightness

if object is resolved, extended source on sky

can measure angular area and determine

surface brightness I = flux/(angular area ∆Ω)

detector dA

dΩ

Q: physical effects: “normal” environment?

Q: effects in cosmological setting?

Q: relevant equations? calculation strategies?

Q: sanity check(s)?
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Newtonian/Euclidean Surface Brightness

For intuition: review Newtonian/Euclidean result

• flat space

• no redshifting, time dilation

consider an extended source, i.e., not pointlike

which is resolved by your telescope

i.e., apparent angular size > point spread function

observables:

• flux F = dE/dt dA as before, but also

• angular dimensions → angular area dΩ detector dA

dΩ

Wavelength-integrated (bolometric) surface brightness

is wavelength-integrated flux per unit source angular area:

Iobs =
dEobs

dA dtobs dΩ
=

dFobs

dΩ
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Dependence on source distance r?

• as usual, F = L/4πr2

• source sky area ∆Ω ⇒ physical area S = r2∆Ω, so

Iobs =
Fobs

∆Ω
=

L/4πr2

S/r2
=

L

4πS

Newtonian/Euclidean result independent of source distance!

“conservation of surface brightness”

fun consequences of surface brightness conservation:

• similar resolved, unobscured Galatic objects (e.g., nebulae)

have similar surface brightness

• nearby large Galaxies have similar surface brightness to MW

• in daily life you rarely experience inverse square law

e.g., brightness of faces of nearby vs distant classmates
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Generalize to cosmological context: observed (bolometric) sur-

face brightness

Iobs =
Fobs

∆Ωobs

1. already know Fobs = a2emLem/4πr2

2. RW metric says angular area

∆Ωobs ≃
δℓ2θ
4πr2

=
D2

em

4πa2emr
=

Aem

4πa2emr2

Combine:

Iobs =
a2emLem/4πr2

4πAem/a2emr2
= a4em

Lem

Aem
(11)

= a4emIem =
Iem

(1 + z)4
(12)
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Intensity of resolved, unobsurced source at zem:

Iobs =
Iem

(1 + z)4

• conservation of surface brightness” no longer true!

vestige: no explicit dependence on r

• cosmic dimming ∝ (1 + z)4

• dimming is independing of cosmology!

useful consistency check!

Q: implications for CMB brightness?
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CMB implications:

for blackbody, Stefan-Boltzmann sez

I =
σ

π
T4

consider CMB, emitted at zem

with temperature Tem

today, observe surface brightness

Iobs = (1+ zem)−4Iem = (1+ zem)−4σ

π
T4
em =

σ

π

(

Tem

1+ zem

)4

still follows blackbody law, but with

Tobs =
Tem

1 + zem

which we have already derived by other means!
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