Astro 507 Lecture 13 Feb. 19, 2014

Announcements:

 \vdash

• Problem Set 2 due Friday

office hours: 3:10-4pm Thurs., or by appt for problem 1: see also extras in Lecture 12

Today: dark energy begins!

Last time: cosmic distances *Q: "Newtonian" distance? Q: luminosity distance? Q: angular diameter distance?*

Cosmic Distances

Newtonian distance

$$d_{\mathsf{Newt}} = \frac{cz}{H_0} = d_{\mathsf{H}} z$$

luminosity distance

$$d_{\rm L} = \sqrt{\frac{L_{\rm em}}{4\pi F_{\rm obs}}} = (1+z) \ r(z)$$

angular diameter distance

$$d_{\mathsf{A}} = \frac{D_{\mathsf{em}}}{\delta\theta} = \frac{r(z)}{1+z}$$

where comoving radial coordinate:

$$r(z) \stackrel{\text{flat}}{=} c \int_0^z \frac{dz'}{H(z)'} \tag{1}$$

Ν

Note: $d_{\rm L}/d_{\rm A} = (1 + z)^2$ for any cosmology "reciprocity relation," sometimes called "distance duality" Now: finished cosmo muscle building▷ passed Olympic trials▷ onward to Sochi!

ASTR 507 thus far: classical cosmology observations, Newtonian & Relativistic theory

Beginning now: 21st Century Cosmology

Cosmic Acceleration & Dark Energy

Cosmic Conundrum: Observations vs Good Taste

- 1990's Cosmology:
- b theory (Dicke coincidence Q: whazzat?, inflation), good taste, and some observational hints on large scales
 - $\rightarrow \Omega_0 = 1$
- \triangleright observation (e.g., galaxy halos, clusters) \rightarrow $\Omega_{m} \sim 0.3$
- *Q: possible reasons for discrepancy?*
- Q: observational tests?

Probing Cosmic Expansion as Far as the Eye Can See

Friedmann: cosmic *contents* control cosmic *dynamics* \rightarrow cosmic ingredients encoded in *history* of cosmic expansion

Strategy: measure H(z) over large range in z

- Friedmann: $H = H(z; \Omega_0) \rightarrow \text{data over large } z \text{ range}$ determine Ω_0
- alternatively, Friedmann accel:

$$H^2 = -2\frac{\ddot{a}}{a} - 8\pi GP - \frac{\kappa c^2}{R^2 a^2}$$

H(z) sensitive to acceleration, pressure, curvature

• Q: what observables trace H(z)? what needed for large z range?

Supernovae as Standard Candles

```
long "baseline" in z \rightarrow requires luminous sources
supernova explosions—can outshine a galaxy
at peak, L_{\text{SN,max}} \sim 10^{10} L_{\odot}
www: SN 1994D; SN2014J in M82
```

Procedure:

- identify SNe to use as standard candles
- \bullet measure flux F for events over wide range in z
- find $d_L(z) = \sqrt{L_{SN}/4\pi F} \stackrel{\text{flat}}{=} (1+z) \int_0^z dz / H(z)$
- infer $H(z) \rightarrow$ cosmic dynamics, parameters

First step:

7

all SN not created equal!

Q: what are basic SN classes observationally? how distinct physically?

Supernova Zoology 101

Type II* (Core-Collapse) Supernovae

massive star $\gtrsim 8 - 10 M_{\odot}$ gravitational collapse optical (baryonic) explosion: $E_{\rm vis} \sim 10^{51}$ erg but most energy released in neutrinos: $E_{\nu} \sim 3 \times 10^{53}$ erg neutron star/black hole remnant

 $^{\ast}\ensuremath{\mathsf{Types}}$ Ib and Ic events also due to core-collapse

Type Ia (Thermonuclear) Supernovae

binary system: white dwarf and companion WD accretes \rightarrow pushed over Chandrasehkar limit i.e., drive $M_{\rm WD}>1.4M_\odot$ \rightarrow gravitationally unstable thermonuclear detonation $E_{\rm exp}\sim 10^{51}$ erg

 \odot

Q: pros and cons of each Type for cosmology?

Supernova Cosmology: The Good, the Bad, and the Ugly

Type II Supernovae

Pro

• Understand basic physics: most E_{SN} in neutrinos saw 1987A neutrinos confirmed basic picture

Con

- Don't understand optical explosion:
- $E_{\rm vis} \sim 1\% E_{\rm SN}$ tough! models often don't explode!
- core collapse: range of masses, E_{SN} \Rightarrow diverse range of $L \Rightarrow$ candle not std occur in *-form regions \rightarrow obscured

Type Ia Supernovae

Pro

Q

- Chandra limit \sim fixed mass + nuke binding \sim fixed \approx fixed *E* release
 - \Rightarrow fixed L(t): std candle!
- low-z SN Ia nearly identical L(t)
- outside *-form: less(?) osbscured

Con

- Don't understand basic scenario: who is companion? giant? another WD? astrophysical "black box"
- low-z Ia not identical L(t)

Type Ia Supernovae: "Standardizable" Candles

Type Ia events: best candidates on balance (for now)

- empirically (low-z) closest to std candles
- ullet typically \sim 1 mag brighter than SN II \rightarrow can probe higher z
- ...but check for systematics!

Type Ia light curves (low-z): *E Pluribus Unum* light curve L(t) same basic shape-rise, fall

- ... but spread in timescale (\sim FWHM) & peak L
- ... but these are tightly *correlated*!
- $\rightarrow L(t)$ spread can be empirically fit with 1 parameter
- \Rightarrow scaled light curves \approx identical! www: light curves
- ⇒ "standardized" candles!

10