> Astro 507
> Lecture 21
> March 9, 2014

Announcements:

- Preflight 4 due 9am Friday

Last time: theory of isotropic CMB spectrum
key aspect: Thompson scattering is only process acting
for most photons (i.e., for all photons with $h \nu \lesssim 40 k T$)
Given a photon spectrum I_{ν} prior to decoupling
Q: what is spectrum after Thompson freezeout?
Observed (post-decoupling) CMB spectrum: thermal
Q: implications?

Q: what physically controls onset of decoupling?

Statistical Mechanics and Cosmology

For much of cosmic time contents of U. in thermal equilibrium
statistical mechanics: at fixed $T \rightarrow$ matter \& radiation n, ρ, P then cosmic $T(a)$ evolution $\rightarrow n, \rho, P$ at any epcoh

Boltzmann: consider a particle (elementary or composite) with a series of energy states:
for two sets of states with energies E_{1} and $E_{2}>E_{1}$ and degeneracies (\# states at each E) g_{1} and g_{2} ratio of number of particles in these states is

$$
\frac{n\left(E_{2}\right)}{n\left(E_{1}\right)}=\frac{g_{2}}{g_{1}} e^{-\left(E_{2}-E_{1}\right) / T}
$$

where I put $k=1$, i.e., $k T \rightarrow T$
Example: atomic hydrogen, at T
Q: ratio of ground (1S) to 1st excited state (2P) populations?

Atomic hydrogen (H I):

- energy levels: $E_{n}=-B_{\mathrm{H}} / n^{2}$ for $n \geq 1$
- angular momenta degeneracies: $g_{\ell}=2 \ell+1$
$1 S: n=1 \rightarrow E(1 S)=-B ; \ell=0 \rightarrow g(1 S)=1$
$2 P: n=2 \rightarrow E(2 P)=-B / 4 ; \ell=1 \rightarrow g(2 P)=3$

$$
\begin{equation*}
\frac{n(2 P)}{n(1 S)}=3 e^{-3 B / 4 T}=3 e^{-120,000 \mathrm{~K} / T} \tag{1}
\end{equation*}
$$

Q: sanity checks-is this physically reasonable?

Q: how does this ratio change if plasma is partially ionized i.e., contains both H I and $\mathrm{H} \mathrm{II}=\mathrm{H}^{+}=p$?

Note: H is bound system \rightarrow discrete energies
ω we now broaden analysis to include unbound systems
\rightarrow continuous energies, momenta

Statistical Mechanics in a Nutshell

classically, phase space (\vec{x}, \vec{p})
completely describes particle state
but quantum mechanics \rightarrow uncertainty $\Delta x \Delta p \geq \hbar / 2$
semi-classically: min phase space "volume"
$\left(d x d p_{x}\right)\left(d y d p_{y}\right)\left(d z d p_{z}\right)=h^{3}=(2 \pi \hbar)^{3}$
per quantum state of fixed \vec{p}
define "occupation number" or "distribution function" $f(\vec{x}, \vec{p})$:
number of particles in each phase space "cell"
Q : f range for fermions? bosons?

$$
\begin{equation*}
d N=g f(\vec{x}, \vec{p}) \frac{d^{3} \vec{x} d^{3} \vec{p}}{(2 \pi \hbar)^{3}} \tag{2}
\end{equation*}
$$

${ }^{\wedge}$ where g is \# internal (spin/helicity) states:
Q: $g\left(e^{-}\right) ? g(\gamma) ? g(p)$?

Fermions: $0 \leq f \leq 1$ (Pauli)
Bosons: $f \geq 0 g\left(e^{-}\right)=2 s\left(e^{-}\right)+1=2$ electron, same for p $g(\gamma)=2$ (polarizations) photon

Particle phase space occupation f determines bulk properties
Number density

$$
\begin{equation*}
n(\vec{x})=\frac{d^{3} N}{d^{3} x}=\frac{g}{(2 \pi \hbar)^{3}} \int d^{3} \vec{p} f(\vec{p}, \vec{x}) \tag{3}
\end{equation*}
$$

Mass-energy density

$$
\begin{equation*}
\varepsilon(\vec{x})=\rho(\vec{x}) c^{2}=\langle E n\rangle=\frac{g}{(2 \pi \hbar)^{3}} \int d^{3} \vec{p} E(p) f(\vec{p}, \vec{x}) \tag{4}
\end{equation*}
$$

Pressure see director's cut extras for more
$P(\vec{x})=\left\langle p_{i} v_{i} n\right\rangle_{\text {direction } i} \stackrel{\text { isotrop }}{=} \frac{\langle p v n\rangle}{3}=\frac{g}{(2 \pi \hbar)^{3}} \int d^{3} \vec{p} \frac{p v(p)}{3} f(\vec{p}, \vec{x})$
Q: these expressions are general-simplifications in FLRW?

FRLW universe:

- homogeneous \rightarrow no \vec{x} dep
- isotropic \rightarrow only \vec{p} magnitude important $\rightarrow f(\vec{p})=f(p)$

in thermal equilibrium at T :

- Boson occupation number

$$
\begin{equation*}
f_{\mathrm{b}}(p)=\frac{1}{e^{(E-\mu) / k T}-1} \tag{6}
\end{equation*}
$$

\triangleright Fermion occupation number

$$
\begin{equation*}
f_{\mathrm{f}}(p)=\frac{1}{e^{(E-\mu) / k T}+1} \tag{7}
\end{equation*}
$$

Note: μ is "chemical potential" or "Fermi energy" $\mu=\mu(T)$ but is independent of E

If $E-\mu \gg T$: both $f_{\mathrm{f}, \mathrm{b}} \longrightarrow f_{\text {Boltz }}=e^{-(E-\mu) / k T}$
\rightarrow Boltzmann distribution

The Meaning of the Chemical Potential

For a particle species in thermal equilibrium

$$
\begin{equation*}
f(p ; T, \mu)=\frac{1}{e^{[E(p)-\mu] / k T} \pm 1} \tag{8}
\end{equation*}
$$

What is μ, and what does it mean physically?
First, consider what if $\mu=0$?

- then f depends only on T and particle mass and thus so do n, ρ, P : why?
- all samples of a substance at fixed T have exactly the same n, ρ, P !
- and hotter \rightarrow larger n, ρ, P
sometimes true! Q: examples?
, but not always! Q: examples?
Q: what is physics behind μ ?

Chemical Potential \& Number Conservation

particle number often conserved
$\rightarrow n=n_{\text {cons }}$ fixed by initial conditions, not T
if particle number conserved, then $\mu \neq 0$ and μ determined by solving $n_{\text {cons }}=n(\mu, T) \rightarrow \mu\left(n_{\text {cons }}, T\right)$
so: $\mu \neq 0 \Leftrightarrow$ particle number conservation

Chemical Potential and Reactions

reactions change particle numbers among species
in "chemical" equilibrium: forward rate $=$ reverse rate
for example: "two-to-two" reaction $a+b \leftrightarrow A+B$
conservation laws (charge, baryon number, etc.)
force relations between chemical potentials
so in above example: $\mu_{a}+\mu_{b}=\mu_{A}+\mu_{B}$
sum of chemical potentials "conserved"
in general:

$$
\begin{equation*}
\sum_{\text {initial particles } i} \mu_{i}=\sum_{\text {final particles } f} \mu_{f} \tag{9}
\end{equation*}
$$

Equilibrium Thermodynamics

Gas of mass m particles at temp T :
n, ρ, and P in general complicated
because of $E(p)=\sqrt{p^{2}+m^{2}}$
but simplify in ultra-rel and non-rel limits

Non-Relativistic Species
$E(p) \simeq m+p^{2} / 2 m, T \ll m$
for $\mu \ll T$: Maxwell-Boltzmann, same for Boson, Fermions
for non-relativistic particles $=$ matter
energy density, number density vs T ?
Q : recall $n(a), \rho(a)$ and $T(a)$?

Non-Relativistic Species

number density

$$
\begin{align*}
n & =\frac{g}{(2 \pi \hbar)^{3}} e^{-\left(m c^{2}-\mu\right) / k T} \int d^{3} p e^{-p^{2} / 2 m k T} \tag{10}\\
& =g e^{-\left(m c^{2}-\mu\right) / k T}\left(\frac{m k T}{2 \pi \hbar^{2}}\right)^{3 / 2} \tag{11}
\end{align*}
$$

energy density:

$$
\begin{align*}
\rho c^{2} & =\langle E n\rangle=\varepsilon_{\text {rest mass }}+\varepsilon_{\text {kinetic }} \tag{12}\\
& =m c^{2} n+\frac{3}{2} k T n \tag{13}\\
& \simeq \varepsilon_{\text {rest mass }}=m c^{2} n \tag{14}
\end{align*}
$$

pressure

II

$$
\begin{align*}
P & =\frac{\langle p v n\rangle}{3}=\frac{\left\langle p^{2} n / m\right\rangle}{3}=\frac{2}{3} \varepsilon_{\text {kinetic }} \tag{15}\\
& =n k T \ll \rho c^{2} \tag{16}
\end{align*}
$$

recover the ideal gas law!

The Ratio of Baryons to Photons

The number of barons per photon is the "baryon-to-photon ratio" $\eta \equiv n_{B} / n_{\gamma}$
photons not conserved in general:
e.g., Brehmsstrahlung $e \rightarrow e+\gamma$
so chem pot $\mu_{e}=\mu_{e}+\mu_{\gamma} \rightarrow \mu_{\gamma}=0$
$\rightarrow n_{\gamma} \sim T^{3}$: fixed by T alone
baryons conserved:
\#baryons $=$ const in comoving vol
$d\left(n_{B} a^{3}\right)=0 \rightarrow n_{B} \propto a^{-3}$
\rightarrow so $\mu_{B}(T) \neq 0$ enforces this scaling
Thus we have

$$
\begin{equation*}
\eta=\frac{n_{B, 0} a^{-3}}{n_{\gamma, 0}\left(T / T_{0}\right)^{3}}=\left(\frac{T_{0}}{a T}\right)^{3} \eta_{0} \tag{17}
\end{equation*}
$$

baryon number conservation: $n_{\mathrm{B}} \propto a^{-3}$
thermal photons: $n_{\gamma} \propto T^{3}$
so as long as $T \sim 1 / a$ then
$\eta=$ const! baryon-to-photon ratio conserved!
thus we expect $\eta_{\mathrm{BBN}}=\eta_{\mathrm{CMB}}=\eta_{0}$!
numerically (from BBN, CMB anisot):

$$
\begin{equation*}
\eta_{0} \sim 6 \times 10^{-10} \ll 1 \tag{18}
\end{equation*}
$$

huge number of photons per baryon! never forget!
but $\rho_{B} / \rho_{\gamma} \sim m_{B} n_{B} / T n_{\gamma} \sim \eta m_{B} / T \neq$ const

Recombination: Equilibrium Thermodynamics

dominant cosmic plasma components γ, p, e, H (ignore He, Li) equilibrium: equal forward and reverse rates for

$$
p+e \leftrightarrow \mathrm{H}+\gamma
$$

and so chem potentials have

$$
\begin{equation*}
\mu_{p}+\mu_{e}=\mu_{\mathrm{H}} \tag{11}
\end{equation*}
$$

recall: for non-rel species $n=g\left(m T / 2 \pi \hbar^{2}\right)^{3 / 2} e^{-(m-\mu) / T}$ thus we have Saha equation

$$
\begin{align*}
& \qquad \begin{aligned}
& \frac{n_{e} n_{p}}{n_{\mathrm{H}}}=\frac{g_{e} g_{p}}{g_{\mathrm{H}}}\left(\frac{m_{e} m_{p}}{m_{\mathrm{H}}}\right)^{3 / 2}\left(\frac{T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-\left(m_{e}+m_{p}-m_{\mathrm{H}}\right) / T} \\
& \approx\left(\frac{m_{e} T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-B / T} \\
& \text { where } B \equiv m_{e}+m_{p}-m_{\mathrm{H}}=13.6 \mathrm{eV}
\end{aligned} \tag{20}
\end{align*}
$$

introduce "free electron fraction" $X_{e}=n_{e} / n_{B}$
use $n_{B}=\eta n_{\gamma} \propto \eta T^{3}$
from Extras last time: $n_{\gamma}=2 \zeta(3) / \pi^{2} T^{3}$, with $\zeta(3)=\sum_{1}^{\infty} 1 / n^{3}=1.20206 \ldots$
and note that $n_{p}=n_{e} Q:$ why?, so

$$
\begin{equation*}
\frac{n_{e}^{2}}{n_{\mathrm{H}}^{n_{B}}}=\frac{X_{e}^{2}}{1-X_{e}}=\frac{\sqrt{\pi}}{4 \sqrt{2} \zeta(3)} \frac{1}{\eta}\left(\frac{m_{e}}{T}\right)^{3 / 2} e^{-B / T} \tag{22}
\end{equation*}
$$

Q: sanity checks? what sets characteristic T scale?
Q: when is $X_{e}=0$ (exactly)?

At last-recombination!
Q: how define physically?
Q: how define operationally, in terms of X_{e} ?
$\stackrel{\leftrightarrow}{\bullet}$: given some $X_{e, \text { rec }}$, how to get $z_{\text {rec }}$?

Director's Cut Extras

Kinetic Theory of Pressure due to Particle Motions

consider cubic box, sidelength L (doesn't really need to be cubic)
contain "gas" of N particles: can be massive or massless
particles collide with walls, bounce back elastically
particles exert force on wall \leftrightarrow wall on particles this lead to bulk pressure
focus on one particle, and its component of motion in one (arbitrary) axis x : speed v_{x}, momentum p_{x}

- elastic collision: $p_{x, \text { init }}=-p_{x, f i n} \rightarrow \delta p_{x}=2 p_{x}$
- collision time interval for same wall: $\delta t_{x}=v_{x} / 2 L$
- single-particle momentum transfer (force) per wall:

$$
F_{x}=\delta p_{x} / \delta t_{x}=p_{x} v_{x} / L
$$

- single-particle force per wall area:
$P=F_{x} / L^{2}=p_{x} v_{x} / L^{3}=p_{x} v_{x} / V$
Q: total pressure?
total pressure is sum over all particles:

$$
\begin{equation*}
P=\sum_{\text {particles } \ell=1}^{N} \frac{p_{x}^{(\ell)} v_{x}^{(\ell)}}{V} \tag{23}
\end{equation*}
$$

can rewrite in terms of an average momentum flux

$$
\begin{equation*}
P=\frac{N}{V} \frac{\sum_{\ell=1}^{N} p_{x}^{(\ell)} v_{x}^{(\ell)}}{N}=\left\langle p_{x} v_{x}\right\rangle n \tag{24}
\end{equation*}
$$

where $n=N / V$ is number density
$\left\langle p_{x}\right\rangle n$ would be average momentum density along x and $\left\langle p_{x} v_{x}\right\rangle n$ is average momentum flux along x
if particle gas has isotropic momenta, then

$$
\begin{equation*}
\left\langle p_{x} v_{x}\right\rangle=\left\langle p_{y} v_{y}\right\rangle=\left\langle p_{z} v_{x}\right\rangle=\frac{1}{3}\langle\vec{p} \cdot \vec{v}\rangle=\frac{1}{3}\langle p v\rangle \tag{25}
\end{equation*}
$$

$$
\text { so } P=\frac{1}{3}\langle p v\rangle n
$$

Ultra-Relativistic Species
$E(p) \simeq c p \gg m c^{2}$ (i.e., $k T \gg m c^{2}$):
Also take $\mu=0(\mu \ll k T)$
energy density, number density?
Q: recall the answers?
for relativistic bosons
number density

$$
\begin{aligned}
n_{\mathrm{rel}, \mathrm{~b}} & =\frac{g}{(2 \pi \hbar)^{3}} \int d^{3} p \frac{1}{e^{c p / k T}-1} \\
& =\frac{4 \pi g}{(2 \pi \hbar)^{3}} \int d p p^{2} \frac{1}{e^{c p / k T}-1}=\frac{g}{2 \pi^{2}}\left(\frac{k T}{\hbar c}\right)^{3} \int_{0}^{\infty} d u u^{2} \frac{1}{e^{u}-1} \\
& =g \frac{\zeta(3)}{\pi^{2}}\left(\frac{k T}{\hbar c}\right)^{3} \propto T^{3}
\end{aligned}
$$

where

$$
\begin{equation*}
\zeta(3)=\sum_{n=1}^{\infty} \frac{1}{n^{3}}=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots=1.20206 \ldots \tag{26}
\end{equation*}
$$

relativistic fermions:

$$
\begin{equation*}
n_{\mathrm{rel}, \mathrm{f}}=\frac{3}{4} n_{\mathrm{rel}, \mathrm{~b}} \tag{27}
\end{equation*}
$$

so $n \propto T^{3}$ for both
e.g., CMB today: $n_{\gamma, 0}=411 \mathrm{~cm}^{-3}$
energy density: relativistic bosons

$$
\begin{aligned}
\rho_{\mathrm{rel}, \mathrm{~b}} c^{2} & =\frac{g}{(2 \pi \hbar)^{3}} \int d^{3} p c p \frac{1}{e^{c p / k T}-1} \\
& =\frac{g}{2 \pi^{2}} \frac{(k T)^{4}}{(\hbar c)^{3}} \int_{0}^{\infty} d u u^{3} \frac{1}{e^{u}-1} \\
& =g \frac{\pi^{2}}{30} \frac{(k T)^{4}}{(\hbar c)^{3}}
\end{aligned}
$$

and for fermions

$$
\begin{equation*}
\rho_{\mathrm{rel}, \mathrm{f}}=\frac{7}{8} \rho_{\mathrm{rel}, \mathrm{~b}} \tag{28}
\end{equation*}
$$

so $\rho \propto T^{4}$ for both
pressure

$$
\begin{equation*}
P_{\text {rel }}=\left\langle\frac{p v}{3} n\right\rangle=\frac{1}{3} \rho_{\mathrm{rel}} c^{2} \tag{29}
\end{equation*}
$$

since $v=c$
$P \propto T^{4}$

Temperature Evolution

If in therm eq, maintain photon occ. \#

$$
\begin{equation*}
f(p)=\frac{1}{e^{p / T}-1} \tag{30}
\end{equation*}
$$

but $c p=h \nu=h c / \lambda \propto 1 / a(t)$:
$\Rightarrow p=p_{0} / a$
w/o interactions, const \# γ per mode p
$\Rightarrow f(p)=$ const
$\Rightarrow p(t) / T(t)=p_{0} / T_{0}$
$\Rightarrow T / T_{0}=p / p_{0}=1 / a=1+z$
e.g., at $z=3, \mathrm{CMB} T=4 T_{0} \simeq 11 \mathrm{~K}$ (measured in QSO absorption line system!)
recall: used $w=1 / 3$ to show $\rho_{\gamma} \propto a^{-4}$
N but blackbody $\rho_{\gamma} \propto T^{4}$
together $T \propto 1 / a(O K!)$

