Astro 507 Lecture 23 March 14, 2014

Announcements:

- Preflight was due this morning
- PS4 posted today, due next Friday
- CfA Mystery announcement 11am Monday March 17
 www: rumor inflation gravity waves in CMB?

PF4 Discussion Question: A "Heliocentric" Universe

Vote: $T_0^{\text{He-dom}}$ vs $T_0^{\text{H-dom}}$?

Vote: in the alt universe, what is CMB spectrum I_{ν} ?

Vote: $\Omega_{\gamma}^{\text{He-dom}}$ *vs* $\Omega_{\gamma}^{\text{He-dom}}$?

Last time: began big bang nuke & particle cosmology

Q: BBN vs CMB similarities? differences?

Q: characteristic T? what cosmic dynamics?

Q: what will be relativistic? nonrelativistic?

Neutrinos: Essential Ingredient yet Barely There

antineutrinos: $\bar{\nu}_e, \bar{\nu}_\mu, \bar{\nu}_\tau$ since electric charge $Q(\nu)=0$, possible that ν is own antiparticle Q: is it?

masses: known that m_{ν} are nonzero (oscillations observed) mass values not known (but for sure $\lesssim few \times 10 \text{ eV} \ll m_e$) Q: implications for BBN? for quarks and charged leptons, masses increase with each family \rightarrow same for ν s??

weak interaction: qualitative characteristics

- (1) "signature" is transformation of quark, lepton flavor e.g., β decays like $n \to p + e^- + \bar{\nu}_e$ really a quark change $d(ud) \to u(ud) + e^- + \bar{\nu}_e$
- ^N (2) for $E \lesssim 100$ GeV (= M_W, M_Z), rxn strength is weak (duh!) e.g., $\nu_e e \rightarrow \nu_e e$ scattering ~ 1 MeV: $\sigma_{\nu_e e} \sim 10^{-44}$ cm² $\sim 10^{-20} \sigma_T$

Nucleosynthesis: Particle Content Revisited

relativistic species:

$$\gamma$$
, $\nu_i \overline{\nu}_i$ $(i \in e\mu\tau)$, e^{\pm} (for $T \gtrsim m_e$)

non-relativistic species:

baryons in BBN: when $T \gtrsim \text{MeV}$: p, n only when $T \leq m_e \rightarrow e$ non-rel too

★ neutrinos in BBN

Q: what sets n_{ν} , ρ_{ν} , T_{ν} ? how do they evolve?

Q: assumptions needed?

BBN Initial Conditions: Ingredients of Primordial Soup

Begin above nuke binding: T > 1 MeV

EM reactions fast: typical rate $\Gamma_{\rm EM} \sim n_\gamma \sigma_{\rm T} c \gg H$ \Rightarrow baryon, photon, e^\pm pair plasma in thermal equilib: $T_B = T_e = T_\gamma \equiv T$

weak int fast too (for now)! $\Gamma_{\rm weak} \sim n_{\nu} \sigma_{\rm weak} c \gg H$ all ν species coupled to each other, and plasma $\to T_{\nu} = T_{\gamma}$

What sets densities n_{ν}, ρ_{ν} ? not only T_{ν} , but also dreaded chem potential μ_{ν} physics issue: is there a net neutrino excess: $n_{\nu} \neq n_{\overline{\nu}}$? c.f. net baryon excess \rightarrow exists: $n_{B} \neq n_{\overline{B}}$, but small: $n_{B}/n_{\gamma} \ll 1$ if net lepton number $n_{L} \sim n_{B}$, turns out $\mu_{\nu}/T \sim \eta$ negligible we will assume $\mu_{\nu} \ll T \Leftrightarrow$ no large lepton/baryon excess if otherwise, changes story!

BBN Initial Conditions: Radiation Domination

Neutrino densities: for sure $m_{\nu} \ll T$ assume $\mu_{\nu} \ll T \to \text{absolute } n_{\nu}, \rho_{\nu}, P_{\nu} \text{ set by } T_{\nu} \to \text{each } \nu \text{ species } i \text{ has } n_{\nu_i} = n_{\bar{\nu}_i} \text{ and}$

$$n_{\nu\bar{\nu},i} \propto T^3 = \frac{3}{4} n_{\gamma} \quad \rho_{\nu\bar{\nu},i} \propto T^4 = \frac{7}{8} \rho_{\gamma} \tag{1}$$

total relativistic energy density:

$$\rho_{\text{rel}} = \rho_{\gamma} + \rho_{e^{\pm}} + N_{\nu} \rho_{1\nu\bar{\nu}} \equiv g_* \frac{\pi^2}{30} T^4$$
 (2)

where g_* counts "effective # of relativistic degrees of freedom" at $T \gtrsim 1$ MeV, $g_* = 43/4 = 10.75$, and Friedmann:

$$\frac{t}{1 \text{ sec}} \approx \left(\frac{1 \text{ MeV}}{T}\right)^2 \tag{3}$$

Q: simple way to see $t \sim 1/T^2$ scaling is right?

now focus on baryons Q: what sets n_B ? n/p?

BBN Initial Conditions: The Baryons

Cosmic baryon density n_B , and thus $\eta = n_B/n_\gamma$ not changed by reactions with $T \lesssim E_{\rm Fermilab} \sim 1 \, {\rm TeV} = 10^6 \, {\rm MeV}$ i.e., baryon non-conservation not observed to date $\rho = n_B / n_A$ set somehow in early universe ("cosmic baryogenesis")

 \triangleright don't *a priori* know n_B , treat as free parameter (η)

neutron-to-proton ratio n/p can and does change at ~ 1 MeV weak int fast: $n \leftrightarrow p$ interconversion

$$n + \nu_e \leftrightarrow p + e^- \tag{4}$$

$$p + \bar{\nu}_e \leftrightarrow n + e^+ \tag{5}$$

also recall $m_n - m_p = 1.29$ MeV: close in mass but not same!

Q: implications for n/p?

0

n/p ratio "thermal" think of as 2-state system: the "nucleon,"

$$E_2 = m_n c$$

- nucleon "ground state" is the proton: $E_1 = m_p c^2$
- nucleon "ground state" is the proton: $E_1=m_pc^2$ nucleon "excited state" is the neutron: $E_2=m_nc^2$ when in equilibrium, Boltzmann sez:

$$\left(\frac{n}{p}\right)_{\text{equilib}} = \frac{g_n}{g_p} e^{-(E_2 - E_1)/T} = e^{-(m_n - m_n)/T}$$
 (6)

with $\Delta m = m_n - m_p = 1.293318 \pm 0.000009$ MeV

at $T \gg \Delta m$: $n/p \simeq 1$

at $T \ll \Delta m$: $n/p \simeq 0$

Equilibrium maintained until weak interactions freeze out i.e., competition between weak physics, gravity physics Q: how will weak freezeout scale compare to nuclear binding energy scale ~ 1 MeV?

Weak Freezeout Temperature

Weak interactions freeze when $H = \Gamma_{\text{weak}}$, i.e.,

$$\sqrt{G_N} T^2 \sim \sigma_0 m_e^{-2} T^5 \tag{7}$$

$$\Rightarrow T_{\text{Weak freeze}} \sim \frac{(G_{\text{N}})^{1/6}}{(\sigma_0/m_e^2)^{1/3}} \sim 1 \text{ MeV}$$
 (8)

gravity & weak interactions conspire to give $T_{\rm f} \sim m_e \sim B_{\rm nuke}!$

for experts: note that $G_{\rm N}=1/M_{\rm Planck}^2$, so

$$\frac{T^2}{M_{\rm Pl}} \sim \alpha_{\rm weak} \frac{T^5}{M_W^2}$$
 (9)

$$\Rightarrow T_{\text{freeze}} \sim \left(\frac{M_W}{M_{\text{Pl}}}\right)^{1/3} M_W \sim 1 \text{ MeV}$$
 (10)

freeze at nuclear scale, but by accident!

Q: what happens to n, p then? what else is going on?

Element Synthesis

first step in building complex nuclei: $n + p \rightarrow d + \gamma$ but $d + \gamma \rightarrow n + p$ until $T \ll B(d)$; see Extras

when photodissocation ineffective, $n+p{\to}d+\gamma$ fast rapidly consumes all free n and builds d which can be further processed to mass-3:

$$d + p \rightarrow ^{3} He + \gamma \quad d + d \rightarrow ^{3} H + p \quad d + d \rightarrow ^{3} He + n$$
 (11)

and to ⁴He

$$^{3}\text{H} + d \rightarrow ^{4}\text{He} + n \quad ^{3}\text{He} + d \rightarrow ^{4}\text{He} + p$$
 (12)

some of which can then make mass-7:

$$^{3}\text{H} + ^{4}\text{He} \rightarrow ^{7}\text{Li} + \gamma \quad ^{3}\text{He} + ^{4}\text{He} \rightarrow ^{7}\text{Be} + \gamma$$
 (13)

Q: what limits how long these reactions can occur?

Q: which determines which products are most abundant?

BBN Reaction Flows

Binding Energy

nuclei are bound quantum structures, confined by nuclear forces among the "nucleons" n,p

can quantify degree of stability—i.e., resistance to destruction via binding energy: for nucleus with Z protons, N neutrons, A=N+Z nucleons

$$B_A$$
 = energy of individual parts – energy of bound whole = $(Zm_p + Nm_n - m_A)c^2$ > 0 if bound

note: generally B_A increases with A but that's not the whole story on stability

binding shared among all A nucleons, so binding per nucleon is B_A/A

nuclear stability \leftrightarrow high B_A/A

www: plot of B_A/A vs A

lowest binding/nucleon: d!

highest: ⁵⁶Fe, but among light elements, ⁴He highest by far

Q: implications for BBN

Reaction flows: tightest binding favored \rightarrow essentially all pathways flow to ^4He

www: nuke network

almost all $n \rightarrow 4$ He:

 $n(^4\text{He})_{after} = 1/2 \ n(n)_{before}$

$$Y_p = \frac{\rho(^4 \text{He})}{\rho_B} \simeq 2(X_n)_{\text{before}} \simeq 0.24 \tag{14}$$

 $\Rightarrow \sim$ 1/4 of baryons into ⁴He, 3/4 $p{\rightarrow}$ H result weakly (log) dependent on η

Robust prediction: large universal ⁴He abundance

But $n\rightarrow^4$ He incomplete: as nuke rxns freeze, leave traces of:

- D
- ${}^{3}\text{He}$ (and ${}^{3}\text{H} \rightarrow {}^{3}\text{He}$)
- 7 Li (and 7 Be \rightarrow 7 Li)

abundances \leftrightarrow nuke freeze T trace species D, 3 He, 7 Li: strong $n_B \propto \eta$ dependence

BBN theory predictions summarized in "Schramm Plot" Lite Elt Abundances vs η

www: Schramm plot

Note: no A > 7...so no C,O,Fe... Q: why not?

Why no elements A > 7?

- 1. Coulomb barrier
- 2. nuclear physics: "mass gaps" no stable nuclei have masses A=5,8 \rightarrow with just $p\ \&\ ^4$ He, can't overcome via 2-body rxs need 3-body rxns (e.g., $3\alpha \rightarrow ^{12}$ C) to jump gaps but ρ , T too low

Stars do jump this gap, but only because have higher density a long time compared to BBN

Testing BBN: Warmup

BBN Predictions: Lite Elements vs η

To test: measure abundances

Where and when do BBN abundances (Schramm plot) apply?

Look around the room—not 76% H, 24% He. *Is this a problem? Why not?*

Solar system has metals not predicted by BBN *Is this a problem? Why not?*

So how test BBN? What is the key issue?

When does first non-BBN processing start?

Testing BBN: Lite Elements Observed

Prediction:

BBN Theory \rightarrow lite elements at $t\sim$ 3 min, $z\sim10^9$

Problem:

observe lite elements in astrophysical settings typically $t\gtrsim 1$ Gyr, $z\lesssim few$ stellar processing alters abundances

Q: If measure abundances in a real astrophysical system, can you unambiguously tell that stars have polluted?

Q: How can we minimize (and measure) pollution level?

stars not only alter light elements
but also make heavy element = "metals"
stellar cycling: metals ↔ time

Solution:

ightarrow measure lite elts and metals low metallicity ightarrow more primitive in limit of metals ightarrow 0: primordial abundances!

look for regions with low metallicity → less processing

Directors' Cut Extras

Elementary Particles for the MinimalistAntimatter

```
fundamental result of Relativistic QM every particle has an antiparticle e.g., e^-=e^+ positron e.g., \bar p= antiproton; Fermilab: p\bar p collisions note: mass m(\bar x)=m(x) decay lifetime \tau(\bar x)=\tau(x) spin S(\bar x)=S(x) electric charge Q(\bar x)=-Q(x)
```

sometimes particle = own antiparticle (must have charge 0) e.g., $\bar{\gamma}=\gamma$, but note: $\bar{n}\neq n$

Cosmic Antimatter: rule of thumb x, \bar{x} abundant when thermally produced: $T > m_x$

Baryons

n and p not fundamental particles made of 3 pointlike particles: "quarks" two types ("flavors") in n,p: u "up," d "down" $p=uud,\ n=udd \to {\sf quark}$ electric charge $Q_u=+2/3,\ Q_d=-1/3$ spin S(u)=1/2=S(d)

baryon \equiv made of 3 quarks

baryon conservation:

assign "baryon number" A(q) = +1/3, $A(\bar{q}) = -1/3$

$$\rightarrow A(n) = A(p) = +1$$

in all known interactions: baryon number conserved:

$$\sum A_{\text{init}} = \sum A_{\text{fin}}$$

 $\stackrel{\bowtie}{\rightarrow}$ guarantees stability of the proton Q: why? but free n unstable, decay to p Q: why not n decay in nuclei?

Periodic Table of Elementary Particles

known fundamental particles (& antipartners): 3 families

$$\begin{pmatrix} u \\ d \\ e \\ \nu_e \end{pmatrix} \begin{pmatrix} c \\ s \\ \mu \\ \nu_{\mu} \end{pmatrix} \text{ charm quark strange quark quark mu lepton (muon)} \begin{pmatrix} t \\ b \\ \tau \\ \nu_{\tau} \end{pmatrix} \text{ top quark bottom quark tau lepton (15)}$$

all of these are spin-1/2: matter made of fermions!

Family Resemblances

 $\frac{1}{2}$ st family: quarks, charged lepton (e) comprise ordinary matter $\frac{2}{2}$ and, $\frac{2}{3}$ srd family particles

- same electric charges, same spins, (mostly) same interactions as corresponding 1st family cousins
- but 2nd, 3rd family quarks, charged leptons more massive and & unstable \rightarrow decay into 1st family cousins

lifetimes very short, e.g., longest is $\tau(\mu^- \to e^- \bar{\nu}_e \nu_\mu) = 2 \times 10^{-6}$ s

Q: implications for BBN epoch?

Weak $n \leftrightarrow p$ Rates

example: want rate Γ_n per n of $\nu + n \rightarrow e^- + p$ as func. of T

Generally,

$$\Gamma_n = n_\nu \langle \sigma v \rangle \sim T^3 \langle \sigma \rangle \tag{16}$$

since $v_{\nu} \simeq c$

can show: cross section $\sigma \sim \sigma_0 (E_e/m_e)^2$ where $\sigma_0 \sim 10^{-44}$ cm² very small! so thermal avg: $\langle \sigma \rangle \sim \sigma_0 (T/m_e)^2$

 $_{\rm N}$ for experts: $\sigma \sim G_F^2 T^2 \sim \alpha_{\rm weak} T^2/M_W^4$ so $\Gamma_{\rm weak} \sim \alpha_{\rm weak} T^5/M_W^4$