Astro 507 Lecture 24 March 17, 2014

Announcements:

- PS4: due Friday or upload by next Monday
- Office Hours: Thurs. 3:10-4pm or by appt

Last time: light elements are born! *Q: why mostly* ⁴He? *why so insensitive to* $\eta \propto \Omega_{baryon}h^2$? *Q: why is D/H tiny? why so sensitive to* η ? *why decreasing with* η ? *Q: why is* ⁷Li/H *really really tiny? Q: why no nuclei with mass* > 7?

Why no elements A > 7?

1. Coulomb barrier

heavier products require heavier reactants which have higher charges

2. nuclear physics: "mass gaps" no stable nuclei have masses A = 5,8 \rightarrow with just $p \& {}^{4}$ He, can't overcome via 2-body rxs need 3-body rxns (e.g., $3\alpha \rightarrow {}^{12}$ C) to jump gaps but ρ , T too low

Stars *do* jump this gap, but only because have higher density a long time compared to BBN

Testing BBN: Warmup

BBN Predictions: Lite Elements vs η

To test: measure abundances

Where and when do BBN abundances (Schramm plot) apply?

Look around the room–not 76% H, 24% He. Is this a problem? Why not?

Solar system has metals not predicted by BBN Is this a problem? Why not?

 $_{\omega}$ So how test BBN? What is the key issue?

When does first non-BBN processing start?

Testing BBN: Lite Elements Observed

Prediction:

BBN Theory \rightarrow lite elements at $t\sim 3$ min, $z\sim 10^9$

Problem:

observe lite elements in astrophysical settings typically $t\gtrsim 1\,$ Gyr, $z\lesssim few$ stellar processing alters abundances

Q: If measure abundances in a real astrophysical system, can you unambiguously tell that stars have polluted?

Q: How can we minimize (and measure) pollution level?

stars not only alter light elements
but also make heavy element = "metals"
stellar cycling: metals ↔ time

Solution: \rightarrow measure lite elts and metals low metallicity \rightarrow more primitive in limit of metals \rightarrow 0: primordial abundances!

look for regions with low metallicity \rightarrow less processing

Deuterium

Two methods: (1) use D/H_{\odot} , model D - Z evolution: model dependent X (old school) (2) measure D/H at high z YES "quasar absorption line systems"

QSO: for our purposes

high-z continuum source (lightbulb)

www: QSO spectrum

consider cloud, mostly H

• at $z < z_{qso}$, but still high z

e.g., $z_{qso} = 3.4, z_{cloud} = 3$

- H absorbs γ if energy tuned to levels lowest: $n = 1 \rightarrow 2$, Ly α
- but Ly α in QSO frame redshifted in cloud frame

What happens?

What about a cloud at yet lower z?

intervening material seen via absorption H: "Lyman- α forest"

7

Deuterium in High-*z* **Absorption Systems**

D energy levels \neq H: for Hydrogen-like atoms

$$E_n = -\frac{1}{n^2} \frac{1}{2} \alpha^2 \mu c^2 \tag{1}$$

where $\mu = \text{reduced mass} = m_e m_A / (m_e + m_A) \simeq m_e (1 - m_e / A m_p)$ $\Rightarrow \Delta E = E_{n,D} - E_{n,H} \approx +1/2 \ m_e / m_p \ E_{n,H}$ $\Rightarrow \Delta z_D = \Delta \lambda / \lambda = -1/2 \ m_e / m_p$ $c\Delta z_D = -82 \text{ km/s (blueward)} \rightarrow \text{look for "thumbprint"}$ www: O'Meara D spectrum

What about stellar processing?

- ★ stars *destroy* D *before* H-burning! (pre-MS)
- * nonstellar astrophysical (Galactic) sources negligible Epstein, Lattimer & Schramm 1977; updated in Prodanović & BDF 03)
- \Rightarrow BBN is only important D nucleosynthesis source
- $\rightarrow D(t)$ only decreases
- ^{∞} chem evol models: versus Z metallicity: $D \sim e^{-Z/Z_{\odot}}D_p$ Quasar absorbers: $Z \sim 10^{-2}Z_{\odot} \rightarrow \text{expect } D_{\text{QSOALS}} \approx D_p$

Deuterium Results

Until recently: the 7 best systems (clean D, well-determined H)

$$\left(\frac{\mathsf{D}}{\mathsf{H}}\right)_{\mathsf{QSOALS}} = \left(\frac{\mathsf{D}}{\mathsf{H}}\right)_p = (2.78 \pm 0.29) \times 10^{-5} \tag{2}$$

Cooke, Pettini (2012, 2013): new very high-precision systems Damped Ly α absorbers (DLAs):

$$\left(\frac{\mathsf{D}}{\mathsf{H}}\right)_{\mathsf{QSOALS}} = \left(\frac{\mathsf{D}}{\mathsf{H}}\right)_p = (2.53 \pm 0.04) \times 10^{-5} \tag{3}$$

now a 2% measurement!

Assessing BBN: Theory vs Observations

(Standard) BBN theory has a free parameter: $n_B/n_\gamma = \eta$ different lite element predictions for different η *Q: so how to compare with observations? is it even possible to test the theory?*

What uncertainties are there in the standard theory?

What uncertainties are there in the obs?

How can we account for these uncertainties when comparing theory and observations?

If theory & obs agree, what would this mean: qualitatively? quantitatively? If they disagree, what would this mean?

Assessing BBN: Theory vs Observations

BBN Theory:

all elements dependent on $\boldsymbol{\eta}$

the only free parameter in standard ("vanilla") calculation

- \Rightarrow for each η value, 4 lite elements: "overconstrained"
- a priori η is unknown, but homogeneous U \rightarrow one value today

www: Schramm plot

Lite Elt Observations:

- 1. measure *one* element: find η
- 2. measure *more* elements: each picks an η
 - \Rightarrow do they agree? test of BBN & of cosmology!

11

Assessing BBN: Procedure

Combine observations (+ errors!) statistical errors only:

- ⁴He and D agree
- ⁷Li likes lower η

include systematics:

disagreement softened, but still present

• Concordance to within factor ~ 2 in $\eta!$ www: Schramm plot w/ data boxes

lite elts fit if η in range

$$3.4 \times 10^{-10} \le \eta \le 6.9 \times 10^{-10} \tag{4}$$

12

Have extrapolated hot big bang to $t \sim 1$ s predict lite elts \rightarrow agrees w/ theory big bang model works back to $t \sim 1$ s, $z \sim 10^{10}$!

lends confidence to extrapolation t < 1 s