Astro 507 Lecture 28 April 2, 2014

Announcements:

• PF 5 due Friday

• No class next Monday April 7

time off for good behavior! BDF @ APS talking BBN

Last time: Particle Dark Matter

Q: why do we think dark matter is a particle? what's it like?

- *Q*: what's a WIMP in the WIMP miracle? why miraculous?
- Q: how can we test these ideas?

 \vdash

WIMP Searches: Accelerators

if WIMPs exist in nature ...and especially if they are supersymmetric particles likely to be found in $\sim few$ yrs at CERN Large Hadron Collider www: CERN, LHC SUSY/WIMP discovery would revolutionize particle physics and all but guarantee dark matter = cold relics

Q: what would the signature be at a collider? What are challenges to digging it out?

Even if nature is not supersymmetric $_{\rm o}$ many particle theories predict new physics at $\sim 1~{\rm TeV}$

WIMP Searches: Direct Detection

if WIMPs are DM \rightarrow dark halo full of them local density $\rho = mn \sim 0.3 \text{ GeV cm}^{-3}$ virial velocities $v_0^2 \sim GM_{\text{halo}}/R_{\text{halo}} \sim (400 \text{ km/s})^2$ \Rightarrow WIMP flux $F_{\text{WIMP}} = nv_0$ \Rightarrow Look for tblue*WIMP-nucleus elastic scattering* – challenging!

Search using sensitive detectors: cryogenic, underground interaction: *WIMP collision* \rightarrow *nuclear recoil* measure: effects of recoiling ($E_{kin} \sim 1 - 100 \text{keV}$) nucleus *Q: for example?*

WIMP-nucleus recoil signatures

- ▷ energy injection: recoil heats detector crystal specific heat $C = dE/dT \sim T^3$ $\Delta T = \Delta E/C \propto T^{-3}$ if supercold, can detect ΔT rise
- *momentum transfer*: detector lattice (phonons) excited
- ▷ *scintillation, ionization*: charged recoil nucleus excites medium relax via γ, e , phonon emission \rightarrow detect these

Hints at WIMPS?

several direct detection experiments see...anomalies

- DAMA (≥ 1998): 250 kg NaI, Gran Sasso, Italy annual modulation seen ! very high significance
 Q: why is P = 1 yr modulation interesting?
- CRESST (2011): CaWO₄ crystals, 730 kg days, Gran Sasso excess of events in signal region
- CoGENT (2011, 2013): 100 g Ge, Soudan, Minnesota annual modulation announced
- CDMS Si (2013): silicon, low-background, 124 kg days, Soudan excess of events in signal region

what if anomalies are dark matter?

www: plots of $\sigma_{\chi N
ightarrow \chi N}$ vs m_{χ}

- recoils are low-energy \rightarrow suggest "light" dark matter $m_{\chi} \sim 10 m_{
 m nucleon} \sim 10$ GeV: weak nuclear recoil
- curse: low-energy recoils more difficult to dig from noise
- note: not all anomalies are consistent with each other

But: many other experiments see nothing, especially

- LUX: 370 kg liquid Xe, Sanford Laboratory, South Dakota
- SuperCDMS: SNOLab, Canada

at face value, LUX rules out other signals though alternatives remain (DM-nucleon spin dependence, DM bound states)

clearly: situation messy and confused!

that's still not all...

1

Q: astrophysical means infer WIMP existence and properties?

WIMP Searches: Indirect Detection

if WIMPs are DM \rightarrow Galactic dark halo full of them but Galactic halo density \gg cosmic mean \rightarrow annihilation rate $q \propto \langle \sigma_{ann} v \rangle \rho_{wimp}^2$ can be large \rightarrow annihilation products potentially observable

Local annihilations

Q: how see if $\chi \bar{\chi} \rightarrow \gamma \gamma$ only? Q: how see if $\chi \bar{\chi} \rightarrow$ other Standard Model particles? e.g., $\chi \bar{\chi} \rightarrow e^+ e^-$ or $q \bar{q}$?

Galactic center annihilations

Q: how see if $\chi \bar{\chi} \rightarrow \gamma \gamma$ only?

[∞] Q: how see if $\chi \bar{\chi} \rightarrow$ other Standard Model particles? e.g., $\chi \bar{\chi} \rightarrow e^+ e^-$ or $q \bar{q}$?

Indirect Detection: Local Annihilation Signatures

if $\chi \overline{\chi} \rightarrow \gamma \gamma$ only: line emission $E_{\gamma} \sim m_{\chi}$ \Rightarrow local contribution to diffuse γ signature but: two-photon annihilation $\chi \overline{\chi} \rightarrow \gamma \gamma$ must be *suppressed* else χ has direct EM coupling \rightarrow electric charge \rightarrow DM not dark! but can and often do have things like $\chi \overline{\chi} \rightarrow \pi' s \rightarrow \gamma' s$

if $\chi \overline{\chi} \rightarrow q \overline{q}$: hadronize, sometimes to nucleons $N \overline{N}$ source of $\overline{n}, \overline{p}$, and $\overline{d} = \overline{n}\overline{p}$ \Rightarrow can look for these in *cosmic rays!* but *"foreground"*: "normal" antimatter from cosmic ray propagation e.g., $p_{cr} + p_{ism} \rightarrow ppp\overline{p}$

Q

if $\chi \overline{\chi} \rightarrow e^+ e^-$: local source of high-energy e^+

Indirect Detection: Galactic Center Annihilation

Galactic center is ρ_{DM} peak \rightarrow annihilation goldmine!?!

Direct Photon Production

$$\star \chi \bar{\chi} \rightarrow \gamma \gamma \text{ line: } E_{\gamma} = m_{\chi} \text{ , and}$$

$$\star \chi \bar{\chi} \rightarrow q \bar{q} \rightarrow \pi^{0} \rightarrow \gamma \gamma \text{ continuum } E_{\gamma} < m_{\chi}$$

Galactic center seen in TeV range

www: HESS

but point source too localized(?), energy spectrum a power-law

Galactic center in GeV range www: Fermi sky

astrophysical foregrounds large:

- cosmic-ray interactions with ISM
- in Galactic plane $p_{\rm cr} + p_{\rm ism} \rightarrow \pi^0 \rightarrow \gamma \gamma$

Daylan+ (2014): strongest claims of non-astrophysical signal centered on Galactic center, axisymmetric geometry energy spectrum $\rightarrow \chi \chi \rightarrow b\overline{b}$, $m_{\chi} \sim 30$ GeV

Dark Matter: Where Do We stand?

Obviously, no clear detections thus far

Current status:

accelerator and astrophysical constraints are:

competitive: both place strong constraints

on particle models for WIMPS

complementary: different methods strong in different parts

of parameter space

Upgrades coming soon on all fronts

 \rightarrow the race is on!

If confirmed WIMP detection:

- DM found
- need particle physics beyond Standard Model
- ★ payoff big!

If no WIMP signature

- SUSY much less attractive
- dark matter not a cold relic → what is it? an asymmetric relic? but why asymmetrical? modified gravity? hidden in braneworld?