Astro 507 Lecture 28 April 2, 2014

Announcements:

- PF 5 was due today
- PS 5 out, due next Friday
- No class next Monday April 7; see you Wednesday

Up till now: worked up in z, back in t studied homogeneous universe = cosmology to zeroth order = unperturbed / background spacetime

Now: begin inflation

- \star highest z, earliest t we will visit
- ★ transition from homogeneous → inhomogeneous Universe
- \star afterward, we will go forward in t study how inflationary (?) density perturbations are written onto CMB and grow to structures today

Cosmological Inflation

The Standard Cosmology: Successes and Discontents

"Standard Cosmology" - FLRW

- General Relativity with
- cosmological principle, and
- perfect fluid, endowed with
- ▶ laboratory physics: atomic, nuclear, particle

How's it going?

Q: what are qualitative, quantitative successes?

Q: what questions, loose ends, untested assumptions remain?

Cosmology Scorecard: Triumphs

Standard Cosmology successfully accounts for observed

- ★ Hubble expansion also cosmic time dilation
- ★ dark night sky (Olber's paradox)
 Q: why is this is a problem? how does FLRW resolve it?
- ★ existence of a highly isotropic CMB with a thermal spectrum also its temperature redshifting
- \star primordial light element abundances $^4 He$ to \sim 10% D to \sim 5% $^7 Li$ to \sim factor 3–4

A good list! Enough to inspire some confidence ...but pressing questions remain

Cosmic Loose Ends

Unexplained observations & unanswered puzzles

- ? what is the dark matter? why is $\rho_{\rm m}/\rho_{\rm B}\sim 7$ today?
- ? what is the dark energy? why is $\rho_{\Lambda}/\rho_{\rm m}\sim 2$ today?
- ? why is $\Omega_0 \approx 1$? "flatness problem"
- ? why is the CMB so isotropic especially for angular scales $> heta_{
 m horizon, recomb} \sim 1^{\circ}$ "horizon problem"
- ? why is the U so homogeneous on large scales? "smoothness problem"
- ? what is the origin of *in*homogeneities on small scales? "lumpiness problem"

Note:

- important questions but not inconsistencies per se
- suggests Standard Cosmology incomplete but not wrong points to new physics

From Outer Space to Inner Space: Other Triumphs and Questions

Elementary particle physics also has Standard Model

- ★ Incorporates (via quantum electrodynamics) non-rel QM inherits successes of atomic physics (~ eV scales)
- \star Incorporates (via quantum chromodynamics) nuke physics inherits successes at \sim MeV scales
- ★ all lab experiments understandable in terms of
 3 families of quarks & leptons
 4 fundamental interactions (strong, weak, E&M, gravity)
- \star E&M and weak forces can be *unified*: "electroweak" understood as low-energy asymmetric manifestation of one high-energy symmetric interaction i.e., at $E\gtrsim 100$ GeV, EM & weak have same coupling, strength cost: invent new *scalar field/spin-0 particle*: Higgs without Higgs: massive photon, massless electron! with Higgs: unification, precision: agree w/ expts to < 1%!

ത

Beyond the Standard Model of Particle Physics

July 5, 2012: Higgs discovery announced!
Nobels distributed 2013!
last particle of Standard Model accounted for

→ if other particle every found: new physics

Spectacular successes raise questions:

- is Higgs a fundamental particle or composite?
- why 3 families?
- why particles masses, interactions?
- why is matter fermionic, force carriers bosonic?
- are other unifications possible?
- ⇒ Standard Model not wrong but incomplete!
- Note similarity to Standard Cosmology: more than coincidence? solutions might indeed be related e.g., new interactions, particles \rightarrow dark matter candidates

Particle Standard Model points beyond itself motivates theories to explain observed patterns

- Supersymmetry (SUSY): boson-fermion symmetry
- unite strong + electroweak: "grand unification theory" (GUT)
 - ★ interaction strengths change with energy
 - \star same at $E_{\rm GUT} \sim 10^{15}~{\rm GeV}$
- unite gravity too: quantum gravity/string theory scale: Compton wavelength (QM) \sim Schwarzchild radius (GR) when $E \sim M_{\rm Planck} = \sqrt{\hbar c/G} \sim 10^{19} \ {\rm GeV}$ $r \sim 10^{-33} \ {\rm cm}, \ t \sim 10^{-43} \ {\rm s}$: Planck scale

All have major cosmological consequences

- ▶ e.g., SUSY: essentially demands WIMPs! a problem if not discovered soon!
- but also, present cosmo puzzles more severe in Early Universe: worth quantifying more precisely since maybe Early U also offers solution

Standard Cosmology: Quantitative Questions

Flatness Problem

Now: $\Omega_0 \sim 1$, i.e., $|\Omega_0 - 1| = 0.0005^{+0.00033}_{-0.00033} \ll 1$ (Planck 2013 + LSS!)

but Friedmann says

$$|\Omega - 1| \equiv |\Omega_{\kappa}| = \frac{c^2}{R^2} \left(\frac{1}{aH}\right)^2 = \frac{c^2}{R^2} \left(\frac{1}{\dot{a}}\right)^2 \tag{1}$$

expect $|\Omega - 1|$ smaller in rad-dom, matter-dom past Q: why?

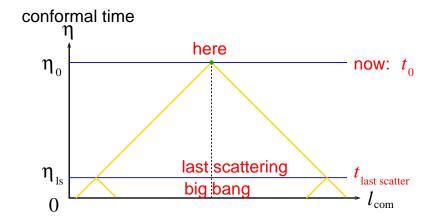
at
$$z_{\rm rec}\sim 1000$$
, $\Omega_{\rm rec}=1\pm 10^{-6}$ at $z_{\rm BBN}\sim 10^{10}$, $\Omega_{\rm bbn}=1\pm 10^{-19}$

⇒ what made the Universe this flat?

Horizon Problem

9

angular size of particle horizon at recombination (PS4):


$$\theta_{\text{hor,rec}} \gtrsim 1^{\circ}$$
 (2)

Q: implications for CMB regions $> 1^{\circ}$ apart?

CMB regions separated by angles $\theta_{hor,rec} \gtrsim 1^{\circ}$ lie outside each other's particle horizon

→ causally disconnected

universe without inflation

so CMB sky surveys contains a number of regions

$$\frac{\Omega_{\rm sky}}{\Omega_{\rm hor,rec}} \sim \frac{4\pi}{\pi \theta_{\rm hor,rec}^2} \sim 10^5$$
 (3)

which are causally disconnected regions

 \Rightarrow how did they become coordinated to $\Delta T/T \sim 10^{-5}$ level?

Unwanted Relics

Particle theories beyond the standard model bring trouble as well as benefits

→ often predict relic particles we don't want

canonical example: grand unification (GUTs) good news: naturally violate baryon number source of matter/antimatter asymmetry? bad news: naturally predict magnetic monopoles unobserved, strongly constrained (lead to topological defects) \Rightarrow no more than $\lesssim 1$ per horizon today

If GUTs correct, monopole production seems unavoidable \Rightarrow how did the U. get rid of monopoles?

Beyond Standard Cosmology: Inflation

Part I: Abstract Inflation

The basic idea:

Imagine the early U. experienced a phase of accelerated expansion, huge ($\sim e^{60}$) increase in scale factor a

if so:

several cosmological birds killed with one stone

Q: which problems, how fixed?

Inflation: the Magic of Acceleration

Flatness Problem

qualitatively: inflate away the curvature

- \star curvature scale $R(t) = a(t) R_0$ hugely enlarged Friedmann curvature term $\kappa/R(t)^2 \rightarrow 0$
- \star departure from flatness $|\Omega-1|\equiv |\Omega_{\kappa}|\sim 1/R^2\dot{a}^2$ changes as d/dt $|\Omega_{\kappa}|$ $\propto \ddot{a}$
 - \Rightarrow acceleration drives $\Omega \rightarrow 1!$

but note: then lumpiness problem worse! (for now)

Horizon Problem

qualitatively: small causal (sub-horizon) region expanded to exponentially large scales CMB really samples one causal region!

 \star at time t, max physical distance any particle can travel in next Hubble time $\delta t = t_H = 1/H(t)$ is

$$\delta \ell_{\text{phys}}(t) \le c\delta t = \frac{c}{H} = d_{\text{H}}(t)$$
 (4)

i.e., the Hubble length at t, and max comoving distance is

$$\delta \ell_{\text{com}} = \frac{\delta \ell_{\text{phys}}}{a} = \frac{c}{aH} = d_{\text{H,com}}$$
 (5)

comoving Hubble length at t

★ compare with: comoving particle horizon

$$d_{\text{hor,com}} = \int_0^t \frac{dt'}{a(t')} = \int_0^{a(t)} \frac{da}{a^2 H} = \int_0^{a(t)} \frac{da}{a} d_{\text{H,com}}$$
 (6)

Q: what is physical distinction between $d_{hor,com}$ and $d_{H,com}$?

The difference: now versus ever!

- comoving Hubble length $d_{\rm H,com}$ is max comov dist a particle can travel in next Hubble time \Rightarrow size of U *presently* (i.e., at t) in causal contact
- \bullet comoving particle horizon $d_{\rm hor,com}$ is \max comov dist a particle can ever have traveled
 - ⇒ size of U ever in causal contact

Can be comparable, but do not have to be!

Note different time evolution:

- $\triangleright \dot{d}_{hor,com} = c/a \ge 0$ never decreases Q: why?
- but $\dot{d}_{H,com} = d(aH)^{-1}/dt = -\ddot{a}/\dot{a}^2 < 0$ in accelerating U! \Rightarrow acceleration shrinks causal region!

Inflating Away the Horizon Problem

quantitative solution to horizon problem: comoving particle horizon $d_{\rm hor,com}$ sets region ever causally connected, and always increases

but: causally connected universe at time t has size set by comoving **Hubble length** $d_{\rm H,com}=1/aH=1/a$ \triangleright if \dot{a} increasing = cosmic acceleration, then $d_{\rm H,com}$ decreasing causal region of U *shrinks* during inflation

▷ also, shows that horizon, flatness linked solving one solves the other!

Monopole Problem

qualitatively: solution via dilution: inflate them away! quantitatively: relic number density $n_{\rm monopole} \propto a^{-3}$ if a grows by e^{60} , number drops by e^{180} "dilution is the solution to your pollution!"

some benefits of acceleration appreciated pre-inflation e.g., Hoyle, Gold, Bondi, Starobinskii, Kazanas...

 \rightarrow by 1980, it was "in the air" that early U. acceleration is devoutly to be wished for

Yes, But..

but wishing doesn't make it so:

- what causes acceleration?
- how can it be tested?