Astro 507 Lecture 34 April 18, 2010

Announcements:

Problem Set 6 (penultimate PS!) due next Friday

Last time: opened our eyes to the *inhomogeneous* universe began structure formation

Q: why is this a fundamentally statistical problem?

Q: what is cosmological "bias"?

Q: what measures of structure would be more fair and balanced?

Q: how to quantify cosmic structure?

Quantifying Density Fluctuations

Given $\rho(t,\vec{x})$, define mean (average) density $\langle \rho \rangle = \langle \rho(t,\vec{x}) \rangle = \rho_{\text{FRW}}(t)$ (suppress t hereafter) density fluctuation $\delta \rho(\vec{x}) = \rho(\vec{x}) - \langle \rho \rangle$ density contrast

$$\delta(\vec{x}) = \frac{\delta\rho}{\rho} = \frac{\rho(\vec{x}) - \langle\rho\rangle}{\langle\rho\rangle} \tag{1}$$

where $\delta \neq \delta_{\text{Dirac}}!$

Q: possible range of δ values?

Q: what is $\langle \delta \rangle$?

Q: how does cosmic expansion affect δ ?

key measure of cosmic structure: density contrast

$$\delta(\vec{x}) = \frac{\delta\rho}{\rho} \equiv \frac{\rho(\vec{x}) - \langle\rho\rangle}{\langle\rho\rangle} \in (-1, \infty)$$
 (2)

$$\delta_{\vec{k}} = \frac{1}{V} \int \delta(\vec{x}) e^{i\vec{k}\cdot\vec{x}} d^3\vec{x}$$
 (3)

where average is over large volume V

Q: what is the order-of-magnitude of the density contrast in this room? of the Galactic ISM?

by definition:
$$\langle \delta \rangle = \frac{1}{V} \int d^3x \, \delta(\vec{x}) = 0$$

would like to study structures on different cosmic lengthscales λ Q: how to do this using density contrast?

Spectrum of Density Fluctuations

In (large) volume V write $\delta(\vec{x})$ as Fourier series

$$\delta(\vec{x}) = \sum_{\vec{k}} \delta_{\vec{k}} e^{-i\vec{k}\cdot\vec{x}} \to \frac{V}{(2\pi)^3} \int \delta_{\vec{k}} e^{-i\vec{k}\cdot\vec{x}} d^3\vec{k}$$
 (4)

(last expression is continuum limit as $V \rightarrow \infty$) where Fourier coefficients are

$$\delta_{\vec{k}} = \frac{1}{V} \int \delta(\vec{x}) e^{i\vec{k}\cdot\vec{x}} d^3\vec{x}$$
 (5)

reality: $\delta(\vec{x})^* = \delta(\vec{x}) \rightarrow \delta_{\vec{k}}^* = \delta_{-\vec{k}}$

Beware!

conventions differ on factors of V, sign of exponential \to affects dimensions of δ_k

Fourier mode described by amplitude $|\delta_k|$ and **comoving wavenumbers** $k \equiv k_{\text{comov}} = 2\pi/\lambda_{\text{comov}}$ and \vec{x} is comoving as well physical values are $d\vec{x}_{\text{phys}} = a(t)d\vec{x}$, $\vec{k}_{\text{phys}} = \vec{k}/a(t)$

Q: what is $\delta_{\vec{k}=0}$?

Q: what is connection between $\delta_{\vec{k}}$ and $\delta_{\vec{k}'}$ if $|\vec{k}| = |\vec{k}'| = k$?

Q: how compute a typical value of $\delta \rho / \rho$? what is it for scale k?

Fun Fourier Facts

$$\delta_{\vec{k}=0} = \int d^3 \vec{x} \,\,\delta(\vec{x}) = \langle \delta \rangle = 0 \tag{6}$$

by definition!

but deeper reason: small $k \leftrightarrow \text{large } \lambda$

 $k\rightarrow 0$ is $\lambda\rightarrow \infty$ = whole universe

on largest scales, U better be homogeneous!

so: cosmological principle demands $\delta_{\text{small }k} \rightarrow 0$

For $|\vec{k}|=|\vec{k}'|=k$, i.e., same mag, different direction must find same amplitude fluctuations

...else have a preferred direction*

so cosmo principle $o \delta_{\vec{k}} = \delta_k$

i.e., wavelength is all that counts k magnitude

 \circ * In fact, would \vec{k} anisotropy would manifest not as preferred direction in structure distribution in real space, but rather as preferred *orientation* of structures! (thanks to Z. Lukic for pointing this out)

The Power Spectrum

Want a measure of "typical" fluctuation size" $\langle \delta \rho / \rho \rangle = \langle \delta \rangle = 0$ by definition, but $\langle (\delta \rho / \rho)^2 \rangle = \langle \delta^2 \rangle \neq 0$

$$\left(\frac{\delta\rho}{\rho}\right)^2 = \int d^3\vec{x} \ \delta(\vec{x})^2 \tag{7}$$

$$= \frac{V^2}{(2\pi)^6} \int d^3\vec{x} \ d^3\vec{k} \ d^3\vec{q} \ \delta_{\vec{k}} \delta_{\vec{q}} e^{-i(\vec{k}+\vec{q})\cdot\vec{x}}$$
 (8)

$$= \frac{V}{(2\pi)^3} \int d^3\vec{k} \ d^3\vec{q} \ \delta_{\vec{k}} \delta_{\vec{q}} \delta_{\text{Dirac}}(\vec{k} + \vec{q}) \tag{9}$$

$$= \frac{V}{(2\pi)^3} \int d^3\vec{k} \ \delta_{\vec{k}} \delta_{-\vec{k}} \tag{10}$$

$$= \frac{V}{(2\pi)^3} \int d^3\vec{k} \ |\delta_{\vec{k}}|^2 = \frac{V}{(2\pi)^3} \int d^3\vec{k} \ P(k)$$
 (11)

where $P(k) = |\delta_k|^2$ is the power spectrum

Rewrite in terms of fluctuations per log interval in wavenumber dk/k:

$$\left(\frac{\delta\rho}{\rho}\right)^2 = \frac{V}{(2\pi)^3} \int d^3\vec{k} \ P(k) = \frac{4\pi V}{(2\pi)^3} \int dk \ k^2 \ P(k)$$
 (12)

$$= \int \frac{4\pi k^3 P(k) V \, dk}{(2\pi)^3 \, k} \tag{13}$$

$$\equiv \int \frac{dk}{k} \left(\frac{\delta \rho}{\rho}\right)_{k}^{2} \tag{14}$$

where the variance over interval $\delta k/k = d \ln k \sim 1$ is

$$\left(\frac{\delta\rho}{\rho}\right)_k^2 \approx \Delta^2(k) \equiv 4\pi \ k^3 \ P(k) \ \frac{V}{(2\pi)^3} \tag{15}$$

dimensionless measure of fluctuations on scale k

power spectrum $P(k) \Leftrightarrow \Delta^2(k)$ central object in structure formation

www: Observed power spectrum Q: what stands out?

Observed Power Spectrum

Gross features of P(k):

- \star fairly simple shape: roughly, broken power law roughly, $P(k) \sim k^1$ at low k, then steepening negative slope, approaching k^{-3} at large k we will want to understand why
- \star break at peak: $k_{\rm peak} \sim 0.02~h^{-1}{\rm Mpc^{-1}}$
 - \rightarrow characteristic scale $\lambda_{\text{peak}} = 2\pi/k_{\text{peak}} \sim 300$ Mpc comoving we will want to understand what sets this scale!

Features of $\Delta(k) = \sqrt{\Delta^2(k)}$:

- ★ $\Delta \gtrsim 1$ at $k \gtrsim 0.03$ Mpc $\rightarrow \lambda \lesssim 20$ Mpc Q: what does this scale tell us?
- $^{\circ}$ \star $\Delta \ll 1$ at small k: U \to homogeneous on large scales cosmo principle vindicated! Good guess, Al!

dimensionless density variance:

$$\delta \rho/\rho \sim \Delta \gtrsim 1$$
 at $k \gtrsim 0.03$ Mpc $\rightarrow \lambda \lesssim 20$ Mpc

at larger lengthscales (smaller k):

- $\delta \rho / \rho \ll 1$: perturbations small
- expect nonlinearities to be small

at smaller lengthscales (larger k): opposite regime

- $\delta \rho / \rho \gg 1$: perturbations large
- nonlinearities large!

characteristic lengthscale of nonlinearities today

characteristic mass scale:

$$\delta M(\lambda) \sim M_{\text{avg}}(\lambda) \sim \frac{4\pi}{3} \lambda^3 \rho_0 \sim 3 \times 10^{15} M_{\odot}$$
 (16)

 5 \sim galaxy cluster masses

→ galaxy clusters are largest nonlinear structures today

Enough already with definitions and lists of observations!

This is cosmology, not stamp collecting!

Now tell me how to understand it all!

Theory of Cosmological Perturbations

Treat structure formation as initial value problem

- given *initial conditions*: "seeds" i.e., adopt spectrum of primordial density perturbations prescription for initial $\rho_i(\vec{x})$, $i \in$ baryons, radiation, DM, DE... e.g., inflation: scale invariant, gaussian, adiabatic
- follow time evolution of $\rho_i(\vec{x})$ -i.e., δ_i for each species i
- compare with observed measures of structure
- * agreement (or lack thereof) constrains primordial seeds e.g., dark matter, inflation, quantum gravity, ...

We want to describe dynamics of cosmic inhomogeneities *Q: which forces relevant? which irrelevant? which scary?*

Dynamics Cosmological Perturbations: Overview

Forces/interactions in perturbed, inhomogeneous universe involve same cosmic particle/field content as smooth/unperturbed universe

but: can manifest in new/different ways due to spatial variations

Definitely relevant forces on perturbations

- *gravity*: overdensities have extra attraction over that of "background" FRW universe
- pressure: baryons have thermal pressure P=nkT photons exert radiation pressure on baryons pre-decoupling pressure gradients present, unlike in homog. background

Probably irrelevant forces on perturbations (will ignore)

- neutrino interactions with self, other species
- dark matter non-gravity interactions with self, or other species

Scary forces on perturbations (will ignore for now, but worry about)

- if dark energy is a field ϕ , perturbations $\delta\phi$ exert inhomogeneous *negative* pressure why scary? unknown underlying physics
- magnetic fields \rightarrow pressure, MHD forces why scary? unknown initial conditions (primordial B?)

At minimum: we will want to describe baryons & dark matter as inflationary perturbations grow thru radiation, matter eras → gravity and photon, baryon pressure mandatory schematically:

$$acceleration = -gravity + pressure$$
 (17)

Q: implications for baryons vs dark matter?

For the species and forces we choose to follow:

Q: how can these be described exactly? approximately?

Q: what formalism needed?