
Astro 507

Lecture 35

April 21, 2014

Announcements:

• Problem Set 6 due Wednesday April 30

Last time: began theory of structure formation

→ evolution of perturbations to a FLRW cosmology

At minimum: we will want to describe baryons & dark matter

as inflationary perturbations grow thru radiation, matter eras

→ gravity and photon, baryon pressure mandatory

schematically:

acceleration = –gravity + pressure (1)

Q: implications for baryons vs dark matter?
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Dynamics of Cosmological Perturbations: Toolbox

need dynamics of inhomogeneous “fluids”

in expanding FLRW background

⋆ full treatment: general relativistic perturbation theory

mandatory for some results Q: which?

⋆ good-enough treatment: Newtonian dynamics is FLRW

as usual, benefits: intuition & simplicity

costs: limited range of validity
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Newtonian Fluid Dynamics & Self-Gravity

Each cosmic species is “fluid” described by fields

• mass density ρ(~x, t)

• velocity ~v(~x, t)

• pressure P(~x, t): from equation of state P = P(ρ, T)

In Newtonian limit: dynamics governed by

mass conservation (continuity) ∂tρ+∇ · (ρ~v) = 0

Euler: “F = ma” ρd~v/dt = ρ∂t~v + ρ~v · ∇~v = −∇P − ρ∇Φ

Note: fixed/non-comoving coords need “convective derivative”

d~v(~x, t)/dt = (∂t + ẋi∂i)~v = ∂t~v + ~v · ∇~v

Newtonian gravity: inverse square → Poisson ∇2Φ = 4πGρ

These are general (albeit Newtonian only)

→ now apply to the Universe
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Linear Theory 0: Newtonian, Non-expanding

consider static, uniform (infinite) distribution of matter

and introduce small perturbations

ρ(~x) = ρ0 [1 + δ(~x)] (2)

v(~x) = ~u(~x) (3)

Φgrav(~x) = Φ0 +Φ1(~x) (4)

where δ ≪ 1, and Φ1, ~u “small”

we want: time development of (initially) small perturbations

following Sir James Jeans

many key ideas of full expanding-Universe GR result

already appear here!

Newtonian fluid equations: continuity (mass conservation)

∂tρ+∇ · (ρ~v) = 0 (5)

ρ0δ̇ + ρ0∇ · ~u ≈ 0 (6)
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Euler (“F = ma”);

ρd~v/dt = ρ∂t~v + ρ~v · ∇~v = −∇p− ρ∇Φ (7)

ρ0~̇u ≈ −ρ0c
2
s∇δ − ρ0∇Φ1 (8)

where adiabatic sound speed c2s = ∂p/∂ρ

Gravity: Poisson (Gauss’ law = inverse square force)

∇2Φ = 4πGρ (9)

∇2Φ1 ≈ 4πGρ0δ (10)

note inconsistency=cheat! ∇2Φ0 6= 4πGρ0: “Jeans swindle”

can combine to single eq for linearized density contrast:

∂2t δ − c2s∇2δ = 4πGρ0δ (11)

Q: behavior for pressureless fluid? “switched-off” gravity?

physical significance? important scales?
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Density contrast evolves as

∂2t δ − c2s∇2δ = 4πGρ0δ (12)

solutions are of the form

δ(t, ~x) = Aei(ωt−
~k·~x) ≡ D(t) δ0(~x) (13)

where δ0(~x) = e−i~k·~x is init Fourier amp

and time evolution is set by exponent ω(k):

ω2 = c2sk
2 − 4πGρ0 ≡ c2s(k

2 − k2J) =

(

cs

kJ

)2 [(
λJ
λ

)2

− 1

]

(14)

key scale: Jeans length

kJ =

√
4πGρ0
cs

λJ =
cs

√

Gρ0/π
∼ csτfreefall (15)

associate Jeans mass: M(λJ/2) = 4π/3 ρ0(π/kJ)
3 ∼ c3s/G

3/2ρ
1/2
0 —

Q: physically, what expect for λ < λJ? λ > λJ?
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perturbation growth δk(t) = δk(t0)e
iωt, with

ω2 = c2sk
2 − 4πGρ0 ≡ c2s(k

2 − k2J) (16)

Jeans length ∼ csτfreefall: sound travel distance in freefall time

→ λ/λJ ∼ number of pressure wave crossings during freefall

if k > kJ so λ < λJ, small scales: pressure can repel contraction

ω real: oscillations about hydrostatic equlilb

if k < kJ so λ > λJ, large scales: pressure ineffective

ω imaginary, exponential collapse

runaway perturbation growth D(t) = eωt ∼ e+t/tfreefall

(also an uninteresting decaying mode e−ωt)

Q: but what about expanding Universe?

should grav instability be stronger or weaker?
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Linear Theory I: Newtonian Analysis in Expanding U.

Recall: Newtonian analysis legal for small scales, weak gravity
→ okay for linear analysis inside Hubble length
apply to matter-dominated U.

Coordinate choices

Eulerian time-indep grid ~x fixed in physical space
expansion moves unperturbed fluid elts past as ~x(t) = a(t)~r

Lagrangian coords ~r time-indep but expand in physical space
following fluid element: locally comoving

⇒ spatial gradients: ∇~x = (1/a)∇~r

Unperturbed (zeroth order) eqs,
using ρ0 = ρ0(t), ~v0 = ȧ

a~x = ȧ~r

∂tρ0 +∇ · (ρ0~v) = ρ̇0 + ρ0
ȧ

a
∇~x · ~x = 0 (17)

ρ̇0 +3
ȧ

a
ρ0 = 0 ⇒ ρ0 ∝ a−3 (18)
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Poisson:

∇2Φ0 =
1

x2
∂x(x∂xΦ0) = 4πGρ0 ⇒ Φ0 =

2πGρ0
3

x2 =
2πGρ0

3
a2r2

∇~xΦ0 =
4πGρ0

3
~x ∇~rΦ0 =

4πGρ0
3

a~r

Euler

d(ȧ~r)/dt = ä~r =
ä

a
~x = −4πGρ0

3
~x (19)

ä

a
= −4πGρ0

3
(20)

Fried accel; with continuity → Friedmann

Zeroth order fluid equations → usual expanding U

in non-rel approximation
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Now add perturbations ρ1 = ρ0δ, ~v1, Φ1

simplest to use comoving (Lagrangian) coords

follow observers in unperturbed Hubble flow

perturbation fluid elements ~x(t) = a(t)~r(t)

peculiar fluid velocity ~v1(t) = a(t)~u(t)

plug in, keep only terms linear in perturbations (∇ = ∇~r)

→ perturbation evolution to first (leading, linear) order

~̇u+2
ȧ

a
~u = − 1

a2
∇Φ1 − 1

a

∇δp

ρ0
(21)

δ̇ = −∇ · ~u (22)

consider the case of Φ1 = 0 and δp = 0, but initial ~u 6= 0

Q: what does this represent physically? what happens? why?

Q: implications for the situation when Φ1 6= 0 and δρ 6= 0?
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Velocity Perturbation Evolution

peculiar velocity ~v1 = a(t) ~u evolves as

~̇u+2
ȧ

a
~u = − 1

a2
∇Φ1 − 1

a

∇δp

ρ0
(23)

if no pressure nor density perturbations

then u̇ = −2Hu, and so u ∝ 1/a2

and physical speed evolves as v1 ∝ 1/a

but recall: long ago derived FLRW test particle speed

evolves as ~v(t) = ~v0/a(t)

→ pressureless fluid’s peculiar vel redshifts same as free particle

→ expansion acts as “drag” on particles

if Φ1, δp 6= 0: Hubble “drag” still present

removes kinetic energy from collasping objects

allows total energy to change (decrease) with time

→ binding increases!
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Linearized Density Evolution

now look for plane-wave solutions ↔ write as Fourier modes

e.g., δ(~r) ∼ e−i~k·~r, with ~k comoving wavenumber

δ̈k +2
ȧ

a
δ̇k =

(

4πGρ0 − c2sk
2

a2

)

δk (24)

if no expansion (a = 1, ȧ = 0), recover Jeans solution

with expansion:

• Hubble “friction” or “drag” −2Hδ̇ opposes density growth

• still critical Jeans scale: kJ =
√

4πGρ0a
2/c2s

expect oscillations on small scales, collapse on larger
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Director’s Cut Extras

1
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Correlation Function

Taking
〈

δ(~x)2
〉

gives (δρ/ρ)2rms

→ overlap of density contrast with itself

(at same point in space)

What about ξ(~r) = 〈δ(~x)δ(~x+ ~r)〉 (fixed ~r, avg over ~x)

(two-point or auto-) correlation function

• physical significance?

what if ρ at each space point independent of all other points?

opposite case: what if strictly periodic (lattice)?

• sign(s)? meaning of sign(s)?

• behavior at large, small |~r|?
• significance of r at which ξ(r) = 0?

• dependence on r̂ = ~r/|~r|?1
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Correlation function: avg of density contrast overlap

with itself, “lagged” by spacing ~r:

ξ(~r) = 〈δ(~x)(~x+ ~r)〉 = 1

V

∫

δ(~x) δ(~x+ ~r) d3~x (25)

• physically: given δ somewhere, measures typical δ

separated by ~r

• if each space point independent of all others,

no matter how close, then:

ξ(~r) = 0 for ~r 6= 0

• but even if this were ever true,

local physics must remove independence

• since δ ∈ (−1,∞), ξ can be negative

(must be for some r!)

Demo–toy model transparencies

Q: if structure in a lattice, what does ξ measure?

Q: what is significance of first zero of ξ?

1
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Correlation function in an idealized “Lattice Universe”

• if lattice of galaxy clusters, ξ oscillates with lattice periodicity

→ gives typical cluster size, and typical cluster separation

true even if not lattice

Correlation function generally:

• first ξ(~r) = 0 gives typical cluster size

• small ~r: must have ξ→(δρ/ρ)2 > 0

large ~r: correlations must vanish ξ→0

(cosmo principle/horizons)

• isotropy: ξ(~r) = ξ(r) independent of direction

1
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In Fourier space:

ξ(~r) =
1

V

∫

δ(~x) δ(~x+ ~r) d3~x (26)

=
V

(2π)6

∫

δ~k δ~q e
−i(~k+~q)·~re−i~q·~r d3~k d3~k d3~x (27)

=
V

(2π)3

∫

δ~k P(k) e−i~k·~r d3~k (28)

=

∫

∆2(k) e−i~k·~r dk

k
(29)

correlation function is Fourier transf of power spectrum P(k)

Q: why observationally useful?

example of general case: P(k) “all you need know”

about density field for Gaussian fluctuations...1
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Power-Law Spectra

Consider a power-law power spectrum P(k) ∼ kn

• useful approximation over large k ranges

• inflation predicts initial conditions of this form

• recall ∆2(k) ∼ k3P(k) ∼ kn+3

homogeneity → n > −3

also must be cutoff at large k Q: physical meaning?

Note: this is only a first approximation

But we will see that the true power spectrum

is not a power law

• theory predicts deviations (“baryon acoustic oscillations”)

• observations have begun to detect these1
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Rough meaning of n:

for a lengthscale x ∼ λ ∼ 1/k,

imagine “filtering” or “smoothing’ density field over this scale

i.e., replace true density at each point with

density averaged over radius x

then for each lengthscale x

corresponding mean mass scale is M ∼ ρ0x
3 ∼ x3

then (δrms)2 ∼ ∫ 1/x
0 ∆(k) dk/k ∼ M−(n+3)/3

and so root-mean-square mass fluctuation is

δrms ∼ M−(n+3)/6 (30)

recall: for large k, P(k) ∼ k → n = 1

→ δrms ∼ M−2/3 drops for large masses:

approach homogeneity as M→∞

1
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Correlation Function

if P(k) ∼ kn, then ξ also a power law:

ξ(r) ∼ r−(n+3); for galaxies

ξgal(r) ≃
(

r

5 h−1 Mpc

)−1.8
(31)

where correlation length rcorr = 5 h−1 Mpc

sets scale where ξ starts to become small

→ typical structure size

note SDSS galaxy-galaxy ξ index gives n ∼ −1.2

consistent with SDSS galaxy-galaxy P(k) measurements

on the same scales (check!)
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Filtered Density

Conceptually useful, and observationally practical
to imagine “filtering” the density field ρ(~x)
over some lengthscale R, mass scale

M(R) = ρ0V (R) = 1.16× 1012h−1
(

R

1h−1Mpc

)3

M⊙ (32)

→ gives “smoothed” field at this scale

To implement mathematically, introduce window function
weights the neighboring points; simplest is “top hat”

W (r;R) =

{

1 r ≤ R
0 r > R

(33)

using this, we have a “filtered variance”

σ2(R) =

∫

d3~x δ(~x)2 W (|~x|;R) (34)

=
V

(2π)3

∫

d3~kP(k) Wk ≃ ∆2(k ∼ 1/R) (35)
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Scale of Nonlinearities Now

Key scale R: where σ2(R) = 1 → linear/nonlinear boundary

empirically: near R ∼ 10 Mpc

i.e., M ∼ 1015M⊙ → rich clusters!

→ scale just becoming nonlinear today

key parameter set by convention: σ8 a.k.a. “sigma-8”

σ28 ≡ σ2(8 h−1Mpc) ≃ 0.8 (36)

2
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Gaussian Perturbations

So far: compared sizes of perturbations across different scales k

→ via shape of P(k) = |δk|2

but can also ask: at one fixed scale k

what range of amplitudes δk appear?

i.e., sample Fourier amplitude δk over

different volumes V ≫ k−3

each a “realization” of true underlying cosmic sample

→ what distribution results?

if Fourier mode amplitudes independent

and arise from causally disconnected regions

then central limit theorem (“law of averages”)

→ δk Gaussian distributed

→ this is also prediction from inflation
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i.e., for density field smoothed over size R

probability of finding fluctuation amplitude δ is

P(δ) =
1

√

2πσ(R)
e−δ2/2σ2(R) (37)

implicitly require |δ| ≪ 1 Q: why

Observationally: holds as far as we can tell
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