Astro 507
Lecture 35
April 21, 2014

Announcements:
e Problem Set 6 due Wednesday April 30

Last time: began theory of structure formation
— evolution of perturbations to a FLRW cosmology

At minimum: we will want to describe baryons & dark matter
as inflationary perturbations grow thru radiation, matter eras

— gravity and photon, baryon pressure mandatory
schematically:

acceleration = —gravity -+ pressure (1)

Q. implications for baryons vs dark matter?
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Dynamics of Cosmological Perturbations: Toolbox

need dynamics of inhomogeneous “fluids”

in expanding FLRW background
* full treatment: general relativistic perturbation theory

mandatory for some results Q: which?
* good-enough treatment: Newtonian dynamics is FLRW

as usual, benefits: intuition & simplicity
costs: limited range of validity



Newtonian Fluid Dynamics & Self-Gravity

Each cosmic species is “fluid” described by fields

e mass density p(Z,t)

e velocity 7(Z,t)

e pressure P(Z,t): from equation of state P = P(p,T)

In Newtonian limit: dynamics governed by

mass conservation (continuity) 6,0 + V- (p%) =0

Euler: “F = ma" pdv/dt = posv + pv- V= —-VP — pVP
Note: fixed/non-comoving coords need ‘“‘convective derivative
dv(Z,t)/dt = (O + x;0;)0 = O + ¥ - VU
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Newtonian gravity: inverse square — Poisson V2 = 47Gp

® These are general (albeit Newtonian only)
— now apply to the Universe



Linear Theory 0: Newtonian, Non-expanding

consider static, uniform (infinite) distribution of matter
and introduce small perturbations

p(Z) = po [1+6(2)] (2)
v(Z) = u(Z) (3)
cDgrav(f) = P+ P1(7) (4)

where § < 1, and ®q1,u “small”

we want: time development of (initially) small perturbations
following Sir James Jeans

many key ideas of full expanding-Universe GR result
already appear herel

Newtonian fluid equations: continuity (mass conservation)

Op +V - (pv) = 0 (5)
pod + poV - U 0 (6)

Q
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Euler (“F = mad");

pdT/dt = pdyT + pT- V¥ = —Vp—pVd (7)
poti —pocs V6 — poVdq (8)

where adiabatic sound speed c¢2 = 9p/dp

Q

Gravity: Poisson (Gauss' law = inverse square force)

V2d = 4nGp (9)
V2d; =~ 4nGpod (10)

note inconsistency=cheat! V2®q # 47Gpg: “Jeans swindle’

can combine to single eq for linearized density contrast:
876 — c2V25 = 4nGpod (11)

Q: behavior for pressureless fluid? “switched-off” gravity?
physical significance? important scales?



Density contrast evolves as
826 — c2V28 = 4w Gpyd (12)
solutions are of the form
5(t, %) = Ae!t—RT) = D(1) §o(T) (13)

where §5(Z) = e~ **'T is init Fourier amp
and time evolution is set by exponent w(k):

2 2

A
w? = cng — AnGpg = cg(k;2 — k%) — <E> [(—J) — 1] (14)

k 7 A

key scale: Jeans length
Va4 Gpg C

ky= AJ = - ~ CsTfreefall (15)
Cs \Gpo/m

associate Jeans mass: M(\;/2) = 4xn/3 po(m/k)3 ~ cg/c;3/2pé/2—
Q: physically, what expect for A < Aj? A > A\;7




perturbation growth §,.(t) = 6.(tg)e™?, with
w? = cgkz — 4nGpg = cg(kz — k%) (16)

Jeans length ~ cs7eeerg: SOUNd travel distance in freefall time
— A/Aj ~ number of pressure wave crossings during freefall

if £ > kj so X< Ay, small scales: pressure can repel contraction
w real: oscillations about hydrostatic equlilb

if £ <kjso \X> Ay, large scales: pressure ineffective
w Imaginary, exponential collapse

runaway perturbation growth D(t) = e®¥! ~ e1t/tfreerall
(also an uninteresting decaying mode e~ %?)

Q. but what about expanding Universe?
should grav instability be stronger or weaker?



Linear Theory I: Newtonian Analysis in Expanding U.

Recall: Newtonian analysis legal for small scales, weak gravity
— okay for linear analysis inside Hubble length
apply to matter-dominated U.

Coordinate choices
Eulerian time-indep grid ¥ fixed in physical space
expansion moves unperturbed fluid elts past as Z(t) = a(t)7
LLagrangian coords r time-indep but expand in physical space
following fluid element: locally comoving
= spatial gradients: Vz = (1/a)V=

Unperturbed (zeroth order) eqs,
using pg = po(t), vo = 24 = ar’

. . a .
Otpo + V- (po¥) = po+ po_Vi & =0 (17)

. a _
po+3-po =0 = po ox a > (18)



Poisson:

1
VZ2dbg = x—zax(xax%) = 4nGpy =
A7Gpo

VfCDO =
Euler

d(aF)/dt = a7

2nG 2nG
m=po, 2 _ £TEP0 2,2

3 3

AnGpo
ar

Py =

V,,:’CDO =

= —4”2”% (19)
A1Gpo

3

(20)

Fried accel; with continuity — Friedmann

Zeroth order fluid equations — usual expanding U

In non-rel approximation
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Now add perturbations p1 = pgd, U1, P1

simplest to use comoving (Lagrangian) coords
follow observers in unperturbed Hubble flow
perturbation fluid elements Z(t) = a(t)7(¥)

peculiar fluid velocity v7(t) = a(t)u(t)

plug in, keep only terms linear in perturbations (V = V)

— perturbation evolution to first (leading, linear) order
1 1Vo

— VD - = F (21)
a a po

6 = -V -4 (22)

. a_
u -+ 2—u
a

consider the case of &1 = 0 and ép = 0, but initial w %= 0
Q. what does this represent physically? what happens? why?
Q. implications for the situation when 1 %= 0 and dp =07
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Velocity Perturbation Evolution

peculiar velocity v1 = a(t) i evolves as

1 1Vo
i+2%= - VP — - (23)
a a? a po
if no pressure nor density perturbations
then & = —2Hu, and so u & 1/a?

and physical speed evolves as v{ «x 1/a

but recall: long ago derived FLRW test particle speed

evolves as v(t) = vg/a(t)

— pressureless fluid’'s peculiar vel redshifts same as free particle
— expansion acts as ‘““‘drag’” on particles

if &1,0p #= 0: Hubble *“drag” still present

removes kinetic energy from collasping objects
allows total energy to change (decrease) with time
— binding increases!
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Linearized Density Evolution

now look for plane-wave solutions < write as Fourier modes
e.g., () ~ e T with k comoving wavenumber

3y 1. 212
5k —I— QEC‘)‘]€ — 47TG,00 — Cs 51{: (24)
a CL2

if no expansion (a = 1,a = 0), recover Jeans solution

with expansion:
e Hubble ‘“friction” or “drag’ —2HJS opposes density growth
e still critical Jeans scale: kj = \/47erOa2/c§

expect oscillations on small scales, collapse on larger
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Director’'s Cut Extras
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Correlation Function

Taking (3(%)2) gives (6p/p)ams
— overlap of density contrast with itself
(at same point in space)
What about £(7) = (0(¥)é(X + 7)) (fixed 7, avg over ¥)
(two-point or auto-) correlation function
e physical significance?
what if p at each space point independent of all other points?
opposite case: what if strictly periodic (lattice)?
e sign(s)? meaning of sign(s)?
e behavior at large, small |7]?
e significance of r at which &(r) = 07
e dependence on r = 7/|7]?



Correlation function: avg of density contrast overlap
with itself, “lagged” by spacing r

() = @ @E+) = [6@) s+ B (25)

e physically: given § somewhere, measures typical ¢
separated by r
e if each space point independent of all others,
no matter how close, then:
() =0 for ¥# 0
e but even if this were ever true,
local physics must remove independence
e since 6 € (—1,00), £ can be negative
(must be for some r!)

Demo—toy model transparencies
o Q. If structure in a lattice, what does & measure?
Q. what is significance of first zero of £7
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Correlation function in an idealized “Lattice Universe”

e if lattice of galaxy clusters, & oscillates with lattice periodicity
— gives typical cluster size, and typical cluster separation
true even if not lattice

Correlation function generally:

e first £(¥) = O gives typical cluster size

e small # must have é—(6p/p)2 >0
large . correlations must vanish £€—0
(cosmo principle/horizons)

e isotropy: &(7) = &£(r) independent of direction
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In Fourier space:

&(f) = i/5(;5) 5(%+ 7) d3%

— /5 5 e—z(kz—l—q)fr —iq-T d3_’ d3"

(2W)6

_ (2@3/5 P(k) e~ R g3
dk

/AQ(k) e—zkr =

—

k

d3

x

(26)
(27)
(28)

(29)

correlation function is Fourier transf of power spectrum P(k)

Q. why observationally useful?

example of general case: P(k) "“all you need know"

about density field for Gaussian fluctuations...
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Power-Law Spectra

Consider a power-law power spectrum P(k) ~ k™
e useful approximation over large k ranges
e inflation predicts initial conditions of this form
e recall A2(k) ~ k3P(k) ~ k"3
homogeneity — n > —3
also must be cutoff at large k Q: physical meaning?

Note: this is only a first approximation

But we will see that the true power spectrum

IS not a power law

e theory predicts deviations ( “baryon acoustic oscillations™)
e Observations have begun to detect these



Rough meaning of n:
for a lengthscale x ~ A ~ 1/k,

imagine “filtering” or “smoothing’ density field over this scale

i.e., replace true density at each point with
density averaged over radius x

then for each lengthscale x

corresponding mean mass scale is M ~ pgz3 ~ 23
then (drms)? ~ 01/3j A(k) dk/k ~ M~ (n+3)/3

and so root-mean-square mass fluctuation is

Srms ~ A (nt3)/6

recall: for large k, P(k) ~k — n=1
s Srms ~ M—2/3 drops for large masses:
approach homogeneity as M —oo

(30)
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Correlation Function
if P(k) ~ k™, then £ also a power law:
£(r) ~ r—(13): for galaxies

Sgai(r) = (5 h—f I\/Ipc>_1.8

where correlation length rcorr = 5 h~1 Mpc
sets scale where £ starts to become small
— typical structure size

note SDSS galaxy-galaxy ¢ index gives n ~ —1.2
consistent with SDSS galaxy-galaxy P(k) measurements
on the same scales (check!)

(31)



Filtered Density

Conceptually useful, and observationally practical
to imagine ‘“filtering” the density field p(¥)
over some lengthscale R, mass scale

R
1h—1Mpc

M(R) = pgV(R) = 1.16 x 102,71 ( )3M@ (32)

— gives ‘“'smoothed” field at this scale

To implement mathematically, introduce window function
weights the neighboring points; simplest is “top hat”

_ 1 r<R
weim={ g ISh (33)
using this, we have a “filtered variance”
A(R) = [d®F 8(@)?2 W(|il; R) (34)

- (2‘;)3 /d3EP(k) Wi ~ A?(k ~ 1/R) (35)
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Scale of Nonlinearities Now

Key scale R: where ¢2(R) = 1 — linear/nonlinear boundary
empirically: near R ~ 10 Mpc

i.e., M ~ 101°M; — rich clusters!

— scale just becoming nonlinear today

key parameter set by convention: og a.k.a. “sigma-8"

02 =0%(8 h~1Mpc) ~0.8

(36)
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Gaussian Perturbations

So far: compared sizes of perturbations across different scales k
— via shape of P(k) = |6;|°

but can also ask: at one fixed scale &

what range of amplitudes 4, appear?

i.e., sample Fourier amplitude 9§, over

different volumes V > k=3

each a ‘“realization’” of true underlying cosmic sample
— what distribution results?

if Fourier mode amplitudes independent

and arise from causally disconnected regions
then central limit theorem (“law of averages”)
— §;. Gaussian distributed

— this is also prediction from inflation
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i.e., for density field smoothed over size R
probability of finding fluctuation amplitude ¢ is

P(§) = 1 6—52/202(R)
\/QWU(R)

implicitly require |0] < 1 Q: why

Observationally: holds as far as we can tell

(37)



