
Astro 507

Lecture 35

April 21, 2014

Announcements:

• Problem Set 6 due next Wednesday April 30

• Physics Colloquium today:

“Majorana Fermions and Neutrino Mass”

Prof. Liang Yang, UIUC Physics

• ICES available online – please do it!

Last time: Newtonian perturbation theory

Q: results in non-expanding universe? characteristic speed?

timescale? lengthscale?

With cosmic expansion:

Q: what’s “peculiar” about a velocity? evolution? implications?

Q: density perturbations: what changes?

1

./LECTURES/Lect35.html


Linearized Density Evolution

now look for plane-wave solutions ↔ write as Fourier modes

e.g., δ(~r) ∼ e−i~k·~r, with ~k comoving wavenumber

δ̈k +2
ȧ

a
δ̇k =

(

4πGρ0 −
c2sk

2

a2

)

δk (1)

if no expansion (a = 1, ȧ = 0), recover Jeans solution

with expansion:

• Hubble “friction” or “drag” −2Hδ̇ opposes density growth

• still critical Jeans scale: kJ =
√

4πGρ0a
2/c2s

expect oscillations on small scales, collapse on larger
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Unstable Modes: Matter-Dominated U

Consider large scales λ ≫ λJ

δ̈k +2
ȧ

a
δ̇k ≈ 4πGρ0δk (2)

in Matter-dominated U: 8πGρ/3 = H2 = (2/3t)−2 = 4/9t2, so

δ̈k +
4

3t
δ̇k −

2

3t2
δk = 0 (3)

Q: how many independent solutions? how to solve?
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Matter-dominated U, large scales:

δ̈k +
4

3t
δ̇k −

2

3t2
δk = 0 (4)

eq homogeneous in t → try power law solution

trial δ ∼ ts works if

s(s− 1) + 4s/3− 2/3 = 0 (5)

solutions s = 2/3,−1:

growing and decaying modes

δ+(t) = δ+(ti)

(

t

ti

)2/3

; δ−(t) = δ−(ti)

(

t

ti

)−1

(6)

• growing mode dominates

• Hubble friction: exponential collapse softened to power law

⋆ Note: solutions indep of k Q: why a big deal?
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Linear Growth Factor

each unstable Fourier mode grows with time as

δk(t) ∝ D(t) ∼ t2/3 ∼ a ∼ η2conform (7)

growth independent of wavenumber k

• in k-space, all unstable modes grow by same factor

and transform to real space, find

• on large scales (but still subhorizon)

δ(t, ~xlarge) ≃ D(t)δ(ti, ~xlarge) (8)

⇒ entire density contrast pattern grows

with same amplification:

⇒ linear grow factor D(t) applies to whole field

Q: implications for power spectrum? fluctuations at scale R?
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on large scales (but still subhorizon)

δk(t) = D(t)δk(ti) (9)

thus, on subhorizon scales power spectrum evolves as

P(k, t) = |δk(t)
2| = D(t)2Pi(k) ∼ a2(t) Pi(k) ∝ a2 (10)

RMS fluctuation at scale R:

• roughly (δρ/ρ)2k ∼ ∆2(k) ∼ k3 P(k)

• so scale R, corresponding to k ∼ 1/R has

RMS fluctuation σ(R) ∼ ∆(k = 1/R):

σ(R, t) ∼ ∆(k = 1/R) ∼ a(t) σi(R) ∼
σi(R)

1 + z
(11)

RMS fluctuations grow as σ ∝ a6



Applications to CMB: Näıve Inferences

before decoupling: pressure dominated by photons

→ expect oscillations – and see them!

after decoupling: growing mode

CMB anisotropies are a snapshot

of perturbations at last scattering

can quantify level: (δT/T)ls ∼ 10−5 at zls ∼ 1100

But matter has ρ ∝ a−3 ∝ T3, so δρ/ρ = 3δT/T

→ δobs(z = 1100) ∼ 3× 10−5 at last scattering

So today, expect fluctuations of size

δ0 =
D0

Dls
δls =

a0
als

δls = (1+ zls)δls ∼ 0.05 ≪ 1 (12)

Should still be very small–no nonlinear structures, such as us!

Q: obviously wrong–egregiously näıve! What’s the flaw?

What’s the fix?
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Cosmic Diversity: Evolution of Multiple Components

Thus far: implicitly assumed a baryons-only universe: not ours!

Cosmic “fluid” contains many different species

with different densities, interactions

baryons, photons, neutrinos, dark matter, dark energy

Each component i has its own equations of motion, e.g.:

δ̈i +2Hδ̇i = −
c2s,ik

2

a2
δi +4πGρ0

∑

j

Ωjδj (13)

species interact via pressure, gravity: evolution eqs coupled

⊲ gravity from dominant Ω drives the other components

⊲ each species’ (pressure) response depends on

microphysics of its interactions, encoded in sound speed cs,i
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Matter Instability in the Radiation Era

(dark) matter perturbation δm during radiation domination

• pick subhorizon scale: growth possible

• focus on k < kJ : Jeans unstable (can ignore pressure)

and high-k modes just oscillate anyway

• treat radiation perturbations as smooth: δrad ≈ 0

Pr = ρr/3: huge, fast cs ∼ c
any perturbations will be oscillatory anyway

• dark matter: weak interactions → pressureless → cs = 0!

Evolution simple – to rough approximation, for these k:

δ̈m +2
ȧ

a
δ̇m

rad−dom
= δ̈m +

1

t
δ̇m ≈ 0 (14)

Simple solutions: growing mode plus decaying mode

δm(t) = D(t)δm(ti) =

(

D1 log t+
D2

t

)

δm(ti) (15)

Q: implications? what about baryons?
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Found D(t) ∼ D1 log t: “growing” mode hardly grows!

⋆ dark matter perturbations frozen during rad dom

dark matter growth quenched by

→ non-growth of radiation perturbations

→ extra expansion due to radiation

⋆ dark matter perturbation growth stalled

until end of radiation era: matter-radiation equality

i.e., ρmatter = ρradiation when zeq ∼ 3× 104

Q: is before or after BBN? recomb?

⇒ this marks onset of structure formation

Q: how does this update our naive CMB calculation?

Hint: then, correct reasoning for δ = δb only

1
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baryons tightly coupled to photons till recombination

→ so dark matter perturbations begin growth earlier

And so: DM has grown more! update earlier estimate

and focus on dark matter

δm,0 =
Dls

Deq
δb,0 ∼

1+ zeq

1+ zls
δb ∼ 30× 0.05 ∼ 1 (16)

DM can grow to nonlinearity today!

⋆ existence of collapsed cosmic structures

requires collisionless dark matter!

⋆ independent argument for large amounts of

weakly interacting matter throughout universe!
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CMB Anisotropies

1
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CMB Anisotropies

Between matter-radiation equality and recombination:

• dark matter perturbations grow

form deepening potential wells

• baryons, electrons tightly coupled to photons (plasma)

undergo oscillations: gravity vs pressure = acoustic

Q: what is the largest scale which can oscillate?

Q: for each mode k, what sets oscillation frequency?

Q: at fixed t, which scales have oscillated the most? the least?

Q: how is this written on the CMB?
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Director’s Cut Extras
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Non-relativistic Cosmic Kinematics

gas particles have random thermal speeds, momenta

how are these affected by cosmic expansion?

Classical picture:

consider non-rel free∗ particle moving w.r.t. comoving frame
~ℓcom(t) 6= const, and so ~ℓphys = a(t)ℓcom(t):

~v = d~ℓphys/dt = ȧ(t)ℓcom(t) + a(t)ℓ̇com(t)

= H~ℓphys + ~vpec
= Hubble flow + peculiar velocity

Note that peculiar velocity v is always w.r.t. the comoving

frame–i.e., the particle speed compared to that of a stationary

fundamental observer at the same point

∗i.e., except for gravitation
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consider a comoving observer at the origin, ~x = 0

in time δt, a particle moves w.r.t. comov frame

physical dist δ~xphys = ~vpecδt

but due to Hubble flow, a comoving (fundamental) observer at

δ~xphys is moving away from the origin at speed ~vcom = Hδ~xphys

thus the new speed of the particle relative to its new comoving

neighbor is given by the relative velocity

~v′pec = ~vpec − ~vcom

(where we used the non-rel velocity addition law)

and so the peculiar velocity changes by

δ~vpec = −Hδ~xphys = −
ȧ

a
~vpecδt = −

δa

a
~vpec (17)

Q: physical implications?
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δvpec/vpec = −δa/a ⇒ physical peculiar velocity vpec ∝ 1/a:

• mvnon−rel = pnon−rel = p0/a

• comoving peculiar velocity dℓcom/dt ∝ 1/a2

slowdown w.r.t. comoving frame: velocity “decays”

not a “cosmic drag” but rather kinematic effect

due to struggle to overtake receding of cosmic milestones

Quantum picture:

recall for photons, prel = h/λ ∼ 1/a (de Broglie)

but de Broglie holds for matter too: pnon−rel = h/λdeB ∼ 1/a

⇒ again, pnon−rel = p0/a

true in general, now apply to thermal gas

1
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non-relativistic gas: Maxwell-Boltzmann

n =
g

(2πh̄)3
e−(mc2−µ)/kTa−3

∫

d3p0 e−p20/2mka2T

if occupation number constant (particle conservation)

need a2 T(a) = T0 = const and thus Tnon−rel ∝ 1/a2:

Tnon−rel,decoupled =

(

adec
a

)2
Tdecoupling =

(

1+ z

1 + zdec

)2

Tdecoupling

evaluate for zdec = zri: estimate

Tgas,today ∼
Tγ,0

1+ zdec,gas
∼ 6× 10−3 K (18)

Q: do the experiment...?

Q: what went wrong?
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Inhomogeneities: The Spice of Life

So far: we have assumed perfect homogeneity!

If universe strictly homogeneous

indeed would cool to Tgas ≪ T0

But happily, U. definitely inhomogeneous on small scales!

gravity amplifies density contrast Q: why?

“the rich get richer, the poor get poorer”

this allows for motion, condensation of matter

halo formation, mergers, shocks, star formation, quasars, ...

these overdense structures release energy

lead to diversity of cosmic matter and radiation today!

But how did we get the inhomogeneities?

And what set the primordial composition of baryons?

→ events in the very early Universe...
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Momentum Redshifting: Rigorously

the preceding heuristic arguments give the right result, but to

obtain this rigorously requires General Relativity (if you haven’t

had GR yet, never mind)

in GR: a free particle’s motion is a geodesic

so 4-momentum pµ = mdxµ/ds = m(γ, γ~v) = (E, ~p) changes as

pα∇αp
µ = pα∂αp

µ +Γ
µ
αβp

αpβ = 0 (19)

and we see that the change in u is due to the connection term

Γ, i.e., to curvature

→ curvature tells matter how to move

note: homogeneity hugely simplifies: pµ = pµ(t)

so ∂µp = 0 except for ∂tp = ṗ
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consider the µ = i ∈ (x, y, z) component of the geodesic eq

pα∂αp
i +Γi

αβp
αpβ = Eṗ+Γi

αβp
αpβ (20)

= 0 (21)

note that in FRW, if we write ds2 = dt2 − hijdx
idxj

where hij is the spatial metric, then nonzero Γi
αβ are

Γi
0j =

ȧ

a
δij (22)

where δij is the Kronecker delta (try it!)

We then have

Eṗi +
ȧ

a
Epi = 0 (23)

and thus

d~p/dt = −
ȧ

a
~p (24)

|~p| ∝
1

a
(25)
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Note that this result is completely general, i.e., works for all

relativistic p, so

• in non-rel limit, v ∝ 1/a: vel redshifts, and free particles

eventually come to rest wrt the comoving background

• in ultra-rel limit, v = p/E ≈ c, doesn’t redshift, but

since E ≈ p, E ∝ 1/a: energy redshifts

note classical derivation: didn’t need Planck/de Broglie relation

p ∝ 1/λ to show this (though that still works too)

2
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Linear Theory II: Sketch of Relativistic Treatment

see, e.g., Dodelson text, Liddle & Lyth Ch. 14

Recall limits of Newtonian treatment:

• only appropriate for scales λ ≪ dH: sub-horizon

• relativistic effects like time dilation absent or ad hoc

General Relativistic approach to cosmological perturbations

• as in Newtonian analysis, perturb density, velocity

→ this perturbs stress-energy

schematically “δT ≈ δρ+ δP = δρ+ c2sδρ”

• must therefore add small perturbations to metric:

gµν = gFRW
µν + hµν

• these are related by Einstein’s Equation

Gµν ≈ “∂∂gFRW + ∂∂h” = 8πGNTµν ≈ “8πGN(ρ+ δρ)”
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Metric Perturbations

Perturbations to metric tensor can be classified as:

• scalar – density perturbations couple to these

these are most important

• vector – velocity perturbations couple to these

these are least important (perturbations decay with time)

• tensor – source of gravity waves

inflationary quantum perturbation excite these modes!

focus on scalar perturbations, which modify FRW metric thusly:

(ds2)perturbed = a(η)2
[

(1 + 2 Ψ )dη2 − (1− 2 Φ )δijdx
idxj

]

(26)

Coordinate freedom ↔ “gauge” choice ↔ spacetime “slicing”

⇒ here: “conformal Newtonian gauge”:

• Ψ(~x, t),Φ(~x, t) Schwarzchild-like forms if a = 1, ȧ = 0
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Substitute perturbed metric into Einstein, keep only linear terms

in Φ and Ψ, e.g., neglect Φ2

use conformal time

and go to k-space

• ∇µTµ0 → “continuity”

dδ

dη
+ ikv +3

dΦ

dη
= 0 (27)

• ∇µTµi → “Euler”

dv

dη
+

da/dη

a
v + ikΨ = pressure sources (28)

• Gµν = 8πGNTµν → “Poisson”

k2Φ = −4πGa2ρδ (29)

k2(Ψ−Φ) = −8πGa2“〈Px − Py〉” (30)

expect anisotropic stress small: 〈Px − Py〉 ≪ ρδ → Ψ ≈ Φ
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Recall: conformal time η gives particle horizon

On sub-horizon scales λ ∼ 1/k ≪ η:

relativistic treatment gives back Newtonian result

in fact: justifies our Newtonian treatment

On super-horizon scales λ ∼ 1/k ≫ η:

relativistic treatment still valid

→ will use this to follow inflationary perturbations

through horizon crossing
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