Astro 507 Lecture 37 April 25, 2014

Announcements:

- Problem Set 6 due next Wednesday April 30
- **ICES** available online please do it!

Last time: Newtonian perturbation theory in expanding U Q: dark matter perturbations before matter-rad eq? after? Q: baryonic perturbations before recomb? after? Q: physical origin of CMB ΔT on scales $\gg d_{hor,recomb}$?

Н

dark matter: pressureless

 \rightarrow all k modes unstable if inside Hubble length

- but: perturbations grow verry sloooowly during radiation era
- \rightarrow DM structures begin formation at matter-radiation equality

then $\delta_{\rm m}(t) = \delta_{\rm m,init} D(t)$ with $D(t) \propto a(t) \propto t^{2/3}$

baryons: until recomb, tightly coupled to photons

 \rightarrow feel huge photon pressure $P_{\gamma} \propto T^4$

$$\rightarrow$$
 sound speed $c_s \sim c/\sqrt{3}$ huge!

so all sub-horizon modes stable! just oscillate

 \rightarrow relativistic pressure-mediated (i.e., acoustic) standing waves! oscillation frequency $\nu=c_s/\lambda$:

small-scale modes oscillate many times

largest-scale modes $\lambda = c_s \eta_{hor}$ oscillates only once

Ν

Pre-Recombination: Acoustic Oscillations

Baryons in DM-dominated background

$$\ddot{\delta}_b + 2\frac{\dot{a}}{a}\dot{\delta}_b \simeq 4\pi G\rho\delta_{dm} - \frac{k^2c_s^2}{a^2}\delta_b \sim \frac{\delta_{dm}}{t^2} - \frac{k^2c_s^2}{a^2}\delta_b \tag{1}$$

key comparison: mode scale $\lambda \sim k^{-1}$ vs **comoving sound horizon** $c_s t/a = d_{s,com}$

for large scales $kc_st/a \ll 1$: baryons follow DM for small scales $kc_st/a \gg 1$: baryons oscillate, as

$$\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{2}$$

(PS 6) where $d\eta = dt/a$ is conformal time

Q: for fixed k, what is δ time behavior? Q: at fixed t, what is δ pattern vs k? Q: what sets largest λ that oscillates?

ŝ

baryonic perturbations do not grow, but oscillate:

$$\delta_b \sim \frac{1}{\sqrt{ac_s k}} e^{i \int k c_s d\eta} \tag{3}$$

to simplify, imagine constant c_s , $\delta_b \sim e^{ikc_s\eta}$

at fixed k, sinusoidal oscillations phase counts number of cycles $N = kc_s\eta/2\pi = c_s\eta/\lambda$ oscillation frequency: $\omega \sim kc_s \sim c_s/\lambda \propto 1/\lambda$

at fixed $t \rightarrow$ fixed η : small λ and large $k \rightarrow$ rapid oscillations largest oscillations at scale $\lambda \sim c_s \eta \sim c_s t/a$: sound horizon

4

Q: when do oscillations stop? observable signature?

Recombination: Snapshot Taken

At recombination, free e^- abundance drops baryons quickly decouple from photons huge drop in pressure $\rightarrow c_s \rightarrow 0$ begin to collapse onto DM potentials photons travel freely (typically) afterwards fluctuation pattern at recomb is "frozen in" δ vs scale records different # of cycles at recomb

$$P(k) = \|\delta_k\|^2 \sim \frac{\sin(2kc_s\eta_{\text{rec}})}{2kc_s\eta_{\text{rec}}} P_{\text{init}}(k)$$
(4)

written onto temperature pattern ("say cheese!")

Recomb fast \rightarrow CMB is image of last scattering surface

С

Q: on small scales, is an overdensity a hot spot or cold spot? why?

Spots Cold and Hot: Small Scales

Define temperature fluctuation $\Theta = \delta T/T$

On Small Scales: Adiabatic

standing waves lead to fluctuations in $\rho_b \sim T^3$, so

$$\Theta \equiv \frac{\delta T}{T} = \frac{1}{3} \left(\frac{\delta \rho}{\rho} \right)_b \tag{5}$$

 \Rightarrow extrema in density \rightarrow extrema in $\Theta \propto \delta_{\gamma}$

- ★ photon T contrast reflects T distribution at source \rightarrow hot is hot and cold is cold
- but both high and low density give large $(\delta T/T)^2$! photon climb out of potential doesn't change $\delta T/T$ much \rightarrow CMB hot spots are high density, cold are low

σ

Q: what about on large scales?

Very Large Scales: Sachs-Wolfe

beyond horizon: no oscillations, main effects gravitational (GR):

- gravitational redshift: photon climbs out of potential $\delta \Phi < 0$ redshift $\delta \lambda / \lambda = \Phi_0 - \Phi_{ls} = -\delta \Phi$ and since $T \sim 1/\lambda$, $(\delta T/T)_{\text{redshift}} = \delta \Phi$: photons cooled!
- time dilation: takes longer to climb out of overdensity looking at younger, hotter universe $\delta t/t = \delta \Phi$, and since $a \sim t^{2/3}$ and $T \sim 1/a$ then $T \sim t^{-2/3}$, and $(\delta T/T)_{\text{dilation}} = -2/3 \ \delta \Phi$ net effect: Sachs Wolfe

$$\left(\frac{\delta T}{T}\right)_{SW} = \left(\frac{\delta T}{T}\right)_{\text{redshift}} + \left(\frac{\delta T}{T}\right)_{\text{dilation}} = \frac{1}{3}\delta\Phi \qquad (6)$$

***** overdensities are **cold** spots, underdensities **hot**

¬ Note: this regime is what tests inflation Q: what predicted?

Inflation and Sachs-Wolfe

Inflation: quantum fluctuations \rightarrow density fluctuations

- adiabatic (all species)
- Gaussian
- scale invariant—what does this mean?

In detail: inflation predicts that the dimensionless fluctuations in the *gravitational potential* \leftrightarrow *local curvature* are independent of scale

 \rightarrow this was what we really calculated in Inflation discussion

inflationary scale-invariance is for grav potential:

i.e., Fourier mode contribution $\Delta_{\Phi}^2 \sim k^3 |\Phi_k|^2 \sim const$ indep of $k \to scale$ invariant: $|\Phi_k|^2 \sim k^{-3}$ Q: how related of P(k)? need to connect gravitational potential/curvature perturbations to density perturbations

But in Newtonian regime, know how to do this: Poisson relates potential and density:

$$\nabla^2 \delta \Phi = 4\pi G \delta \rho \quad \to \quad \Phi_k \sim \delta_k / k^2 \tag{7}$$
$$\circ P(k) = |\delta_k|^2 \sim k^4 |\Phi_k|^2$$

thus scale invariant gravitational potential gives power spectrum:

and s

Q

$$P_{\text{scale}-\text{inv}}(k) \sim k^4 \left| \Phi_{\text{scale}-\text{inv}}(k) \right|^2 \sim k$$
(8)
i.e., scale invariance: $P(k) \sim k^n$, $n_{\text{scale}-\text{inv}} = 1$

Angular vs Linear Scales

So far: decomposed fluctuations in (3-D) \vec{k} -space but observe on sky: 2-D angular distribution

Transformation: projection of plane waves at fixed k: see intersection of wave with last scattering shell www: Wayne Hu animation

appears on a range of angular scales but typical angular size is $\theta \sim \lambda/d_{rec,com} \sim (kd_{rec,com})^{-1}$

```
large angles → large λ (check!)
for large angular scales θ > θ<sub>hor,diam</sub> ~ 1°, superhorizon perturbations not affected by oscillation
for small angular scales, see standing waves
peaks at extrema, harmonics of sound horizon
```

k are in ratios 1:2:3:...

10

The CMB Observed

- Observe 2-D sky distribution of $\frac{\Delta T}{T}(\hat{n}) \equiv \Theta(\hat{n})$ in direction \hat{n}
- Decompose into spherical harmonics

$$\Theta(\hat{n}) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi)$$
(9)

with Y_{Im} spherical harmonics Q: why not $\ell = 0, 1$? Q: angular size vs ℓ ? λ vs ℓ ?

Form angular correlation function Q: what is this physically?

$$\langle \Theta(\hat{n}_1)\Theta(\hat{n}_2)\rangle = \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) \left\langle |a_{\ell m}|^2 \right\rangle P_{\ell}(\hat{n}_1 \cdot \hat{n}_1) \quad (10)$$
$$= \frac{1}{4\pi} \sum_{\ell=2}^{\infty} (2\ell+1) C_{\ell} P_{\ell}(\cos\vartheta) \quad (11)$$

 $\frac{1}{1}$

where $\cos \vartheta = \hat{n}_1 \cdot \hat{n}_1$ Q: averaged over the *m* azimuthal modes–why? all interesting anisotropy information encoded in

$$C_{\ell} = \left\langle |a_{\ell m}|^2 \right\rangle \tag{12}$$

isotropy \rightarrow azimuthal dependence averages to zero

Note: analog of Δ^2 (variance per log scale) is $\mathcal{T}^2(\ell) = \ell(\ell+1)C_\ell$: usually what is plotted

Since
$$P_{\ell}(\cos \theta) \sim (\cos \theta)^{\ell} \sim \cos(\ell \theta)$$

at fixed ℓ , angular size $\theta \sim 2\pi/\ell = 180^{\circ}/\ell$
e.g., $\ell = 2$ quadrupole $\rightarrow \theta \sim 90^{\circ}$
and horizon size $\theta \sim 1^{\circ}$ is at $\ell \sim 200$

and since $\theta \sim \lambda/d_{rec} \sim 1/dk$: \exists multipoles scale as $\ell \sim 1/\theta \sim k \sim 1/\lambda$ low $\ell \rightarrow$ big angular, physical scales \rightarrow small k

CMB Anisotropy Observations: Strategy

- achieve high sensitivity, remove systematics make a "difference experiment" i.e., measure δT directly, don't subtract
- observe as much of the sky as possible (or as needed!) balloons/ground: limited coverage satellites (COBE, WMAP, Planck): all-sky
- remove Galactic contamination: "mask" plane
- recover Θ for observed region
- \bullet decompose into spherical harmonics $Y_{\ell m}$
- construct power spectrum $\ell(\ell+1)C_\ell$
- report results
- $\overline{\omega}$ collect thousands of citations, prominent Prizes

CMB Temperature Anisotropies: Results

COBE (1993)

- first detection of $\delta T/T \neq 0$
- receiver horn angular opening ~ 8°
 → only sensitive to large angular scales
 i.e., superhorizon size
- found $(\delta T/T)_{\rm rms} \sim 10^{-5}$
- power $\ell(\ell+1)C_{\ell}$ flat \rightarrow implies $P(k) \sim k!$
 - n = 1 spectrum: scale invariant!

Interregnum (late 90's, early 00's)

- ground-based, balloons confirmed anisotropy
- acoustic peaks discovered
- strong indication of first peak

14

WMAP (2003-)

- first all-sky survey of small angular scales
- n = 1 confirmed, indication of small tilt $n 1 \neq 0$? consistent with inflation! and non-trivially so!
- acoustic peaks mapped: good measurement of 1st, 2nd detection of third
- first peak: $\ell \sim 200$ horizon at recomb!
- power dropoff seen at large ℓ
 - \rightarrow nonzero thickness of last scattering

due to photon diffusion, non-instantaneous decoupling