Astro 507 Lecture 38 April 30, 2014

Announcements:

- Problem Set 6 due Friday
- office hours tomorrow, 3-4pm
- ICES available online please do it!

Leftover issues:

• CMB spherical harmonic decomposition

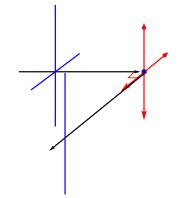
 $T(\theta,\phi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\theta,\phi)$

amplitude $a_{\ell m}$ expected m dependence at fixed ℓ

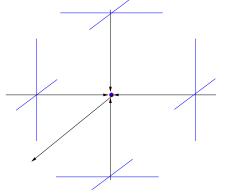
```
www: hint--spherical harmonic maps for different \,m\,
```

• WMAP/Planck frequency coverage

н

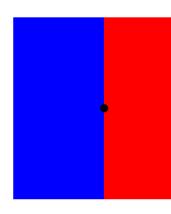

Last time:

• CMB temperature anisotropies

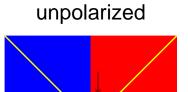

Q: what quantity is plotted to show CMB "wiggles"?

- Q: what is the physical origin of CMB "wiggles"?
- began CMB polarization

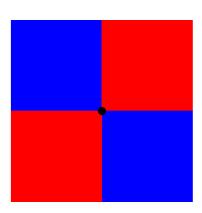
Q: how and under what conditions does Thomson scattering produce polarization? Q: pol'n signal from a region scattering isotropic radiation? classical picture: e^- as dipole antenna incident polarized wave accelerates $e^ \rightarrow$ azimuthally symmetric radiation, peaks in $\theta = 0$ plane



for isotropic radiation:

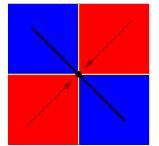

unpolarized!

point on hot-cold "wall"
Q: T pattern seen at point?
Q: what's scattered pol'n?

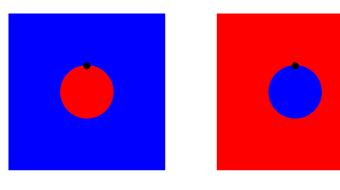


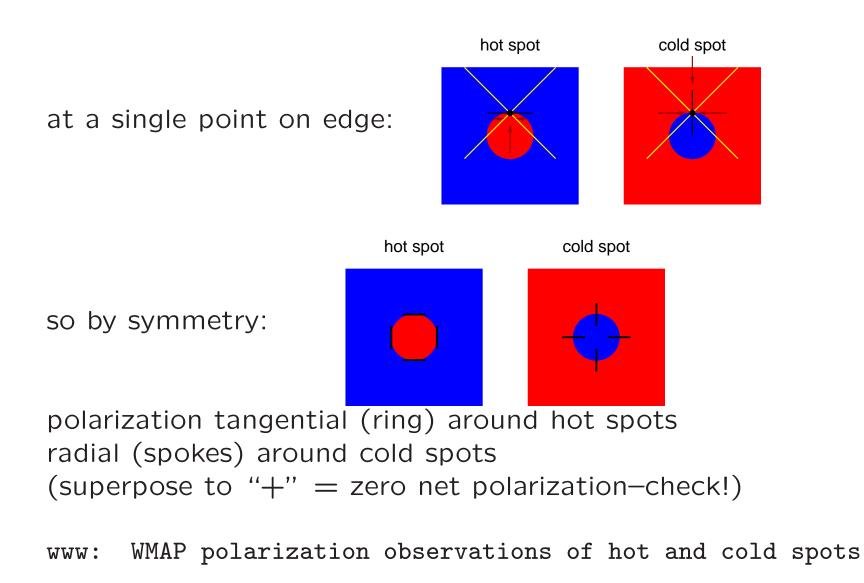
pattern seen at point: *dipole* anisotropy extra polarized radiation from hot region cancels

Now consider point on "checkerboard vertex" *Q: what is scattered polarization? why? Q: what temperature pattern seen at point?*



dipole anisotropy:


point sees *quadrupole* anisotropy extra polarization from hot regions doesn't cancel


quarupole anisotropy: linear polarization

 \rightarrow net linear polarization towards us, aligned w/ "cold" axis www: cool Wayne Hu movie

Q: what about edge of circular hot spot? cold spot? hot spot cold spot

σ

Note: polarization & T anisotropies $\it linked$ \rightarrow consistency test for CMB theory and hence hot big bang

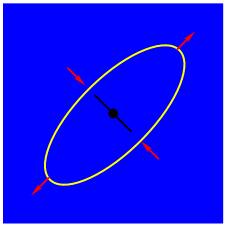
Polarization: *E* and *B* **Modes**

CMB polarization makes headless vector field on sky i.e., at each point, polarization vector (possibly zero) but vector has no "forward/backward" arrow

can decompose polarization field into

- *E* modes: $\operatorname{div} \vec{P} \neq 0$ and $\operatorname{curl} \vec{P} = 0$
- *B* modes: $\operatorname{div} \vec{P} = 0$ and $\operatorname{curl} \vec{P} \neq 0$

Q: which modes from hot spots? cold spots?


can show:

- temperature (scalar) perturbations only excite *E* modes
- tensor (gravity wave) perturbations excite both E and B modes

B Modes and Gravity Waves

recall: gravity waves preserved volume but stretch and squeeze in + and \times modes

effect on CMB: velocity perturbation leads to linear polarization gravity wave: linear polarization

 \odot

Polarization Observed

First detection: pre-WMAP! \star DASI (2002) ground-based interferometer at level predicted based on T anisotropies! Woo hoo!

WMAP (2003): first polarization-T correlation function

WMAP (2006):

- better statistics
- also polarization autocorrelation
- \bigstar used T-pol'n links to get model-independent
 - 3-D density power spectrum: consistent with scale invariant!

Q

BICEP2: The Revolution Begins?

March 17, 2014:

BICEP2 announces detection of primordial CMB *B* modes

- B modes measured on large scales (low ℓ) should be dominated by primordial gravity wave signal
- *B* modes already seen by SPT at small scales but these are due to CMB lensing by large scale structure

if confirmed:

10

- crowning achievement of inflation
- opens window to first instants of the Big Bang!

CMB Summary and Outlook

What has the CMB done for us?

- confirmed hot, dense, smooth early universe
- measured primordial power spectrum, consistent w/ inflation
- seen acoustic peaks
- measured a wealth of cosmological parameters
- seen polarization: confirms underlying physics model
- BICEP2: inflationary gravity wave signal!!?!

What will the CMB do for us?

- very soon (this year and next): confirmation(?) of gravity wave signal from inflation!
- CMB as background illumination for structure formation
- ∴ SZ effect, 21-cm, ...
 - stay tuned!

Structure and Horizons

Particle horizons set range for causal physics including growth of structure so two requirements for perturbation growth \star perturbation must be inside "horizon," i.e., $\lambda \leq d_H = H^{-1} \star U$. must be matter-dominated: $z < z_{eq}$

Choreography:

inflation lays down perturbations at \boldsymbol{z} enormous all frozen in until matter domination , then

- on scales already inside Hubble length at $z_{\rm eq}$ δ_m growth stalled until matter-domination
- \bullet on superhorizon scales at $z_{\rm eq},~\delta_m$ growth begins immediately after $d_H>\lambda$

Today: observe scales in both regimes

¹⁵ *Q:* What should be the difference? What characteristic scale divides these regimes? Key scale in cosmic structure distribution: comoving Hubble length at matter-rad equality

$$d_{\rm H,com}(z_{\rm eq}) = \frac{1}{a_{\rm eq}H_{\rm eq}} = \frac{a_{\rm eq}^{1/2}d_{\rm H,0}}{\sqrt{2\Omega_{\rm m}}} \sim 60 \ h^{-1} \ \rm{Mpc} \qquad (1)$$

corresponding to $k_{eq} = 1/d_{H,com} = 0.02 \ h \ Mpc^{-1}$ *Q: sound familiar?*

How do does perturbation growth differ on scales sub/super horizon at at z_{eq} ?

13

in linear regime ($\delta \ll 1$) linear growth factor: $D(t) = \delta_k(t)/\delta_k(t_{\text{init}})$; k-independent

- large scales have linear growth factor D_0/D_{enter}
- small scales have grown more in absolute terms but less than linear extrap from horizon entry only grown by $D_0/D_{\rm eq} < D_0/D_{\rm enter}$

Dividing scale at equality horizon:

 $\lambda_{eq} = d_{com,hor}(z_{eq}) \sim \eta_{eq}$ and corresponding k_{eq} if smaller scale, horizon entry at pre-eq redshift z_{enter} such that $d_{hor,com}(z_{enter}) = \eta_{enter} = \lambda$ \rightarrow small scales have growth "stunted" by factor

$$\frac{D_{\text{small}}}{D_{\text{large}}} = \frac{a_{\text{enter}}}{a_{\text{eq}}} = \left(\frac{\eta_{\text{enter}}}{\eta_{\text{eq}}}\right)^2 = \left(\frac{\lambda}{\lambda_{\text{eq}}}\right)^2 = \left(\frac{k_{\text{eq}}}{k}\right)^2 < 1 \quad (2)$$

where we used $D \propto a \propto \eta^2$ in matter-dom

Different scales have not grown by same amount!

 \rightarrow to recover initial power spectrum need to account for this

Transfer Function

Theory (initial power spectrum) connected with Observation (power spectrum processed by growth) via transfer function-measures "stunting correction"

$$T_{k}(z) = \frac{\text{present density spectrum}}{\text{extrapolated initial spectrum}} = \frac{\delta_{k, \text{today}}}{D(z)\delta_{k}(z)} \quad (3)$$

$$\rightarrow \begin{cases} 1 & k < k_{\text{eq}} \\ (k_{\text{eq}}/k)^{2} & k > k_{\text{eq}} \end{cases} \quad (4)$$

Note: since $\delta_{k,\text{init}} \sim \delta_{k,0}/T_k$ power spectrum goes as $P_{k,\text{init}} \sim P_{k,0}/T_k^2$

Now apply to observations

15

Recovering the Initial Power Spectrum

Apply transfer function to invert observed spectrum

Observed power spectrum

• peak at \sim 30 Mpc $\simeq \lambda_{eq}$ (check!)

• for
$$k < k_{eq}$$
, $P_{obs}(k) \sim k^1 = P_{init}(k)$
 \rightarrow scale invariant! (check!)

- for $k > k_{eq}$, turnover in power spectrum (check!) quantitatively: $P_{obs}(k) \rightarrow k^{-3}$ so $P_{init} \sim P_{obs}/T^2 \sim k^4 P_{obs} \sim k$ also scale invariant (check!)
- ö observed power spectrum consistent with gravitational growth of scale-invariant spectrum!

Dark Matter–Cold and Hot

Perturbation growth & clustering depends on dark matter internal motions—i.e., "temperature" or velocity dispersion key idea: velocity dispersion (spread) is like pressure → stability criterion is Jeans-like

Cold Dark Matter (CDM)

slow velocity dispersion-trapped by gravitational potentials no lower (well, very small) limit to structure sizes perturbation growth only limited by onset of matter dom \rightarrow small, subhorizon objects form first, then larger \rightarrow hierarchical structure formation: "bottom-up"

Hot Dark Matter (HDM)

17

high velocity dispersion—escape small potentials small objects can't form—large must come first then fragment to form smaller: "top down"

- *Q: particle candidate for HDM?*
- *Q: physical implications for HDM structure formation?*
- Q: how can this be tested?
- *Q:* how does HDM alter the power spectrum (transfer function)?

Hot Dark Matter: Neutrino Cocktail

HDM classic candidate: massive $(m_{\nu} \sim 1 \text{ eV})$ neutrinos if light enough, relativistic before z_{eq}

- → "free streaming" motion out of high-density regions
- \rightarrow characteristic streaming scale: horizon size when $\nu \rightarrow$ nonrel

$$\lambda_{\mathsf{FS},\nu} \sim 40 \ \Omega_m^{-1/2} \ \sqrt{1 \ \mathrm{eV}/m_{\nu}} \ \mathsf{Mpc}$$
(5)

★ perturbations on scales $\lambda < \lambda_{FS}$ suppressed ★ $\lambda_{FS,\nu}$ sensitive to absolute ν masses!

If HDM is dominant DM: expect *no* structure below λ_{FS} \rightarrow a pure HDM universe already ruled out!

If "mixed dark matter," dominant CDM, with "sprinkle" of HDM HDM reduces structure below $\lambda_{\rm FS}$

- $\rightarrow \lambda_{FS}$ written onto power spectrum (transfer function)
- $\stackrel{i}{\circ}$ \rightarrow accurate measurements of, e.g., P(k) sensitive to m_{ν} cosmic structure can weigh neutrinos! (goal of DES, et al)

∧CDM

"Standard" Cosmology today: ACDM ...namely:

- FLRW universe
- today dominated by cosmological constant $\Lambda \neq 0$
- with cold dark matter
 - \Rightarrow hierarchical, bottom-up structure formation
- ...and usually also inflation: scale invariant, Gaussian, adiabatic

This is the "standard" model but not the only one

Q: arguments in favor?

20

- *Q: arguments for other possibilities?*
- Q: which pieces most solid? which shakiest?

At minimum: ACDM is *fiducial / benchmark* model standard of comparison for alternatives

 \ldots and so we will adopt ΛCDM the rest of the way