Astro 507 Lecture 40 May 2, 2014

Announcements:

- Problem Set 6 due Fnow
- Final Preflight posted, due next Wednesday 9am fun, optional, easy bonus points
- **ICES** available online please do it!

Last time:

consider dark matter perturbations at scale $k = 2\pi / \lambda_{comov}$

- initially laid down in early universe (by inflation?)
- but "left horzion" when $\lambda > d_{H,\text{comov}}^{\inf} = 1/aH_{\inf}$

 $^{\sim}$ causal physics begins when "re-enter horizon" after inflation Q: key factor determining further growth history?

Key scale in cosmic structure distribution: *comoving Hubble length at matter-rad equality*

$$d_{\rm H,com}(z_{\rm eq}) = \frac{1}{a_{\rm eq}H_{\rm eq}} = \frac{a_{\rm eq}^{1/2}d_{\rm H,0}}{\sqrt{2\Omega_{\rm m}}} \sim 60 \ h^{-1} \ \rm Mpc \qquad (1)$$

corresponding to $k_{\rm eq} = 1/d_{\rm H,com} = 0.02 \ h \ \rm Mpc^{-1}$
Q: sound familiar?

ω

Q: How do does perturbation growth differ on scales sub/super horizon at at z_{eq} ?

in linear regime ($\delta \ll 1$) linear growth factor: $D(t) = \delta_k(t)/\delta_k(t_{init})$; k-independent

- large scales have linear growth factor D_0/D_{enter}
- small scales have grown more in absolute terms
- but less than linear extrap from horizon entry only grown by $D_0/D_{\rm eq} < D_0/D_{\rm enter}$

Dividing scale at equality horizon:

 $\lambda_{eq} = d_{com,hor}(z_{eq}) \sim \eta_{eq}$ and corresponding k_{eq} if smaller scale, horizon entry at pre-eq redshift z_{enter} such that $d_{hor,com}(z_{enter}) = \eta_{enter} = \lambda$ \rightarrow small scales have growth "stunted" by factor

$$\frac{D_{\text{small}}}{D_{\text{large}}} = \frac{a_{\text{enter}}}{a_{\text{eq}}} = \left(\frac{\eta_{\text{enter}}}{\eta_{\text{eq}}}\right)^2 = \left(\frac{\lambda}{\lambda_{\text{eq}}}\right)^2 = \left(\frac{k_{\text{eq}}}{k}\right)^2 < 1 \quad (2)$$

where we used $D \propto a \propto \eta^2$ in matter-dom

Different scales have not grown by same amount!

 \rightarrow to recover initial power spectrum need to account for this

Transfer Function

Theory (initial power spectrum) connected with Observation (power spectrum processed by growth) via transfer function-measures "stunting correction"

$$T_{k}(z) = \frac{\text{present density spectrum}}{\text{extrapolated initial spectrum}} = \frac{\delta_{k, \text{today}}}{D(z)\delta_{k}(z)} \quad (3)$$

$$\rightarrow \begin{cases} 1 & k < k_{\text{eq}} \\ (k_{\text{eq}}/k)^{2} & k > k_{\text{eq}} \end{cases} \quad (4)$$

Note: since $\delta_{k,\text{init}} \sim \delta_{k,0}/T_k$ power spectrum goes as $P_{k,\text{init}} \sim P_{k,0}/T_k^2$

Now apply to observations

σ

Recovering the Initial Power Spectrum

Apply transfer function to invert observed spectrum

Observed power spectrum

• peak at \sim 30 Mpc $\simeq \lambda_{eq}$ (check!)

• for
$$k < k_{eq}$$
, $P_{obs}(k) \sim k^1 = P_{init}(k)$
 \rightarrow scale invariant! (check!)

• for $k > k_{eq}$, turnover in power spectrum (check!) quantitatively: $P_{obs}(k) \rightarrow k^{-3}$ so $P_{init} \sim P_{obs}/T^2 \sim k^4 P_{obs} \sim k$ also scale invariant (check!)

observed power spectrum consistent with gravitational growth of scale-invariant spectrum!

Dark Matter–Cold and Hot

Perturbation growth & clustering depends on dark matter internal motions—i.e., "temperature" or velocity dispersion key idea: velocity dispersion (spread) is like pressure → stability criterion is Jeans-like

Cold Dark Matter (CDM)

slow velocity dispersion-trapped by gravitational potentials no lower (well, very small) limit to structure sizes perturbation growth only limited by onset of matter dom \rightarrow small, subhorizon objects form first, then larger \rightarrow hierarchical structure formation: "bottom-up"

Hot Dark Matter (HDM)

 ∞

high velocity dispersion—escape small potentials small objects can't form—large must come first then fragment to form smaller: "top down"

- *Q: particle candidate for HDM?*
- *Q: physical implications for HDM structure formation?*
- Q: how can this be tested?
- *Q:* how does HDM alter the power spectrum (transfer function)?

Hot Dark Matter: Neutrino Cocktail

HDM classic candidate: massive $(m_{\nu} \sim 1 \text{ eV})$ neutrinos if light enough, relativistic before z_{eq}

- → "free streaming" motion out of high-density regions
- \rightarrow characteristic streaming scale: horizon size when $\nu \rightarrow$ nonrel

$$\lambda_{\mathsf{FS},\nu} \sim 40 \ \Omega_m^{-1/2} \ \sqrt{1 \ \mathrm{eV}/m_{\nu}} \ \mathsf{Mpc}$$
(5)

★ perturbations on scales $\lambda < \lambda_{FS}$ suppressed ★ $\lambda_{FS,\nu}$ sensitive to absolute ν masses!

If HDM is dominant DM: expect *no* structure below λ_{FS} \rightarrow a pure HDM universe already ruled out!

If "mixed dark matter," dominant CDM, with "sprinkle" of HDM HDM reduces structure below $\lambda_{\rm FS}$

- $\rightarrow \lambda_{\text{FS}}$ written onto power spectrum (transfer function)
- $\stackrel{6}{\rightarrow}$ accurate measurements of, e.g., P(k) sensitive to m_{ν} cosmic structure can weigh neutrinos! (goal of DES, et al)

∧CDM

"Standard" Cosmology today: ACDM ...namely:

- FLRW universe
- today dominated by cosmological constant $\Lambda \neq 0$
- with cold dark matter
 - \Rightarrow hierarchical, bottom-up structure formation
- ...and usually also inflation: scale invariant, Gaussian, adiabatic

This is the "standard" model but not the only one

Q: arguments in favor?

11

- *Q: arguments for other possibilities?*
- Q: which pieces most solid? which shakiest?

At minimum: ACDM is *fiducial / benchmark* model standard of comparison for alternatives

...and so we will adopt ΛCDM the rest of the way

Nonlinear Reality

So far: much success in understanding structures in the linear regime $\delta \ll 1$

But the real universe is nonlinear! What happens when perturbations become large? ⇒ both theory and observations become challenging!

Theory: nonlinear dynamics rich = interesting = hard some ingenious analytical approximations, special cases but serious calculations require numerical solution

12

Observation: collapsed objects can be easy to find
e.g., bright galaxies-but more to the picture than meets the eye
can't see the DM halos (usually!); mass doesn't trace light
how to define a halo? measure its mass?
Q: why would this be ambiguous?

Spherical Collapse

consider idealized initial conditions "top hat" Universe

- spherical, uniform density ρ
- embedded in flat, matter-dom universe with "background" density $\rho_{\rm bg}$ ("compensated" by surrounding underdense shell)

spherical collapse model a cosmological

workhorse

13

a nonlinear problem with analytic solution!

Given: initial density contrast $\delta_i \ll 1$ at some t_i Want to calculate: density contrast $\delta(t)$ lucky break–Newton's "iron sphere"/Gauss' law/Birkhoff's: in spherical matter distribution, interior ignorant of exterior \Rightarrow overdense region evolves exactly as closed universe! PS6: solution is parametric (cycloid)

$$a(\theta) = \frac{a_{\max}}{2}(1 - \cos\theta)$$
 (6)

$$t(\theta) = \frac{t_{\max}}{\pi} (\theta - \sin \theta)$$
(7)
(8)

- "development angle" $\theta \propto \eta$ conformal time!
- formally, collapse (to a point!) at $t_{coll} = 2t_{max}$
- *Q*: describe overdensity evolution qualitatively? *Q*: what really happens when $t \gtrsim t_{coll}$?

Spherical Collapse: Qualitative Lessons

Formal solution

$$a(\theta) = \frac{a_{\max}}{2}(1 - \cos\theta) \quad ; \quad t(\theta) = \frac{t_{\max}}{\pi}(\theta - \sin\theta) \tag{9}$$

- initially expand with Universe
- but extra gravity in overdensity slows expansion
- reach max expansion at t_{max} , then begin collapse "turnaround" epoch
- in reality: after turnaround, infalling matter virializes marks birth of halo as collapsed object
- Note: Brooklyn is not expanding! Nor is SS, MW, LG *Q: what is criterion* not *to expand?*

Beyond the formal solution:

- halo still overdense \rightarrow neighboring shells fall in
 - \rightarrow mass continues to grow by accretion!
- in real life: mergers too

15