
Astro 507

Lecture 41

May 5, 2014

Announcements:

• Final Preflight posted, due next Wednesday 9am

fun, optional, easy bonus points

• ICES available online – please do it!

Final Problem Set (PS7): Due Thurs May 15

• takes place of final exam

• open book, notes, web

• but: do not collaborate!

Vote: how long do you want the PS?

(a) 1 week

(b) 3 days

(c) 2 days

(d) 1 day
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Last time: spherical collapse

idealized initial conditions

“top hat” Universe

• spherical, uniform density ρ

• embedded in flat, matter-dom universe

with “background” density ρbg
(“compensated” by surrounding

underdense shell)

spherical collapse model a cosmological

workhorse

a nonlinear problem with analytic solution!

background universe

ρ
bg bg

ρ>ρ

Q: what is special/magical about this setup?

Q: qualitative results?

Q: why useful? limitations?
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Spherical Collapse: Quantitative Lessons

want overdensity: since ρ ∝ 1/a3

δ(t) =
ρ(t)

ρbg(t)
− 1 =

(

abg
a

)3
− 1 (1)

with abg ∝ t2/3 the matter-dom background

→ exact nonlinear solution (pre-virial)

For small t, to first order a(t) ∼ t2/3 = abg(t):

background result; δ(t) = 0

to second order: a(t) = abg(t)[1− (12πt/tcoll)
2/3/20]

δ(t) ≈ 3

20

(

12πt

tcoll

)2/3

= δlin(t) (2)

δ(t) ∝ D(t) ∝ t2/3 ∝ abg same as linear result!
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Very useful result:

δnonlin(t) =

(

abg
anonlin

)3

− 1 (3)

δlin(t) ≈ 3

20

(

12πt

tcoll

)2/3

(4)

connects full nonlinear result with linear counterpart

→ maps between the two

E.g., at turnaround

δnonlin = (6π)2/43 = 5.6, but δlin = 1.06

at virialization (PS6):

δnonlin ≈ 180, but δlin = 1.69

→ defines a critical linear overdensity

Q: why useful?
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Strategy: given initial linear density field δi
• evolve perturbations with linear growth δlin(t) = D(t)/δi
• identify linearly extrapolated perturbations with δlin(t) > 1.69

⇒ these will be collapsed objects by time t!

lesson: in linearized δlin(t0)

a “cut” at δc

divides virialized vs nonvirialized

δ

δ

−1

0

c

lin

lin
ea

riz
ed

 d
en

si
ty
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on

tr
as

t

position

not collapsed

collapsed

also: in a nonlinear field, can use δvir ∼ 180

as working definition of collapsed structure

good for comparing theory, observation Q: procedure?
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Nonlinear Evolution: Lessons from Spherical Collapse

Qualitatively

⊲ overdensity evolves as closed “subuniverse”

⊲ starts expanding, but slower than cosmic background

pulls away from Hubble flow: reach max expansion, then

turnaround

⊲ virialize → form bound object

⊲ no further expansion, except due to accretion, merging

Quantitatively

⊲ can compute both δlin(t) and exact δ(t)
gives mapping from easy to (more) correct

⊲ collapse/virialization when δlin = 1.69 and δ = 18π2 ≃ 180

recipe for forecasting structures in initial field δinit ≪ 1

recipe for defining halos: region surrounding density peak

and having overdensity δρ/ρ ∼ 180

⋆ Given these, can devise analytical tools to describe

distribution of structures
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Press-Schechter Analysis

Outlook

adopt hierarchical picture (i.e., some form of CDM)

⇒ matter at every point belongs to some structure

over time: go from many small structures to fewer, larger ones

Goal

Given properties of density field–i.e., Pinit(k) and P(k, t) = T2
k (t)Pinit(k)

Compute distribution of structures as function of mass, time

Quantitatively: want “mass function”

comoving number density of structures

in mass range (M,M + dM):

dncom

dM
(M, t) (5)

from this, can compute many other things

e.g., density in (M,M + dM) Q: which is...?
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Press-Schechter Ingredients/Assumptions

• given mass M , filter density field

on comoving length R such that M = 4π/3 ρbg,com(t)R3

density contrast has variance σ2(M) =
∫

P(k) W (k;R) d3k

• in linear regime, density field obeys Gaussian statistics:

in filtered field, probability of finding contrast in (δlin, δlin+dδlin):

P(δlin;M, t) dδlin =
1

√

2πσ2(M, t)
exp

[

− δ2lin
2σ2(M, t)

]

dδlin (6)

why only good in linear regime Q: why?

• Spherical collapse model maps from linear → nonlinear

identifies linear contrast threshold δc ≃ 1.69 for collapsed objects

note: δc is time indep! (in EdS cosmo)

⇒ can find fraction of cosmic mass in objects of mass M

Q: how?
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fraction of mass or of comoving volume

in collapsed objects of mass M at time t is

f(> δc;M, t) =

∫ ∞

δc
P(δlin;M, t) dδlin (7)

=
1

√

2πσ2(M, t)

∫ ∞

δc
exp

[

− δ2lin
2σ2(M, t)

]

dδlin (8)

=
1√
2π

∫ ∞

δc/
√
2σ

e−u2 ≡ 1

2
erfc

[

δc√
2σ(M, t)

]

(9)

• for realistic P(k), σ2(M) ∼ ∫

k3P(k)Wk(M)dk/k ∼ M−(n+3)/3

→ at fixed mass, σ(M, t) monotonically decreases with M

(down to some minimum M cutoff)

• σ(M, t) evolves (linearly) as σ ∼ a(t) ∼ 1/(1 + z)

Q: implications for mass distribution at fixed time?

Q: implications for structure formation over time?
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Press-Schechter: mass fraction and structure formation

f(> δc;M, t) =
1√
2π

∫ ∞

δc/
√
2σ

e−u2 =
1

2
erfc

[

δc√
2σ(M, t)

]

(10)

⋆ mass distribution at fixed t:

as filter mass M decreases, variance σ(M) increases

⊲ more large fluctuations → more above threshold

⊲ more structures at smaller masses

i.e., δc/
√
2σ(M) decreases → larger f

⇒ smallest halos most numerous → hierarchy of masses!

⋆ time evolution at fixed M :

at time, scale factor increases, variance σ(t) ∝ a(t) increases

⊲ more structures at fixed mass

⊲ small structures merge → larger (at expense of smallest)

⇒ hierarchical clustering!
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Press-Schechter Mass Function I: Quick-n-Dirty

Press & Schechter (1974):

note that structures can only be made from overdensities

but underdensities (voids) occupy mass fraction f(δlin < 0) = 1/2

so fraction of overdensites in collapsed objects of M is

F(> δc;M, t) =
f(δlin > δc)

f(δlin > 0)
= 2f(δlin > δc) (11)

famous factor of two!

Compare mass fraction at M and M + dM : difference

dF = F(M + dM)− F(M) ≃ dF

dM
dM (12)

=

√

(

2

π

)

dσ(M)−1

dM

δc

σ(M)
e−δ2c /2σ

2(M) dM (13)
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But probability of finding structure M in filter volume Vcom =

M/ρbg is

dF(M) = V
dn

dM
dM =

M

ρbg

dn

dM
dM (14)

and so PS mass function is

M
dn

dM
=

ρbg
M

M
dF

dM
=

√

2

π

d lnσ(M)−1

d lnM

δc

σ(M)

ρbg
M

e−δ2c /2σ
2(M)

• implicitly also a function of t via ρbg(t) and σ(M, t)

• encodes and quantifies hierarchical clustering

from this can immediately find, e.g., distribution of (comoving)

density across masses of collapsed objects:

dρ(M)

dM
= M

dn

dM
(15)1
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Press-Schechter: Summary

Quantitative Output

⋆ Easy to use, very powerful (semi-)analytic mass function

Qualitative Worldview/Limitations

⋆ every point lies in exactly one structure:

largest above threshold

⋆ all structures have δlin = δc: born today!

⋆ PS blind to interior substructure

and formation history of a given object

Q: how to test PS theory?

Q: which structures should be best described? worst?1
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Tests of Press-Schechter

Versus Numerical Simulations

PS is idealized analytic approximation of hierarchical clustering

assumes true density field δ perfectly mapped onto

linear field δlin vis spherical collapse model

Even if underlying CDM, hierarchy idea right, PS approximate

→ test against numerical simulations w/ non-ideal δ field

results: unreasonably good agreement!

Versus Observations

Best applicable to those just formed: σ(R) ∼ σ8 ∼ 1

→ galaxy clusters! M ∼ 1015 M⊙, and so PS gives

n(M) ∼ M
dn

dM
∼ ρ0

M
νe−ν2/2 ∼ ρ0

M
∼ 10−4 Mpc−3 (16)

about right! (where ν = δc/
√
2σ ∼ 1)

...and works unreasonably well at other scales too

1
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Applications of Press-Schechter

Mergers

PS very powerful because gives mass function vs time:

N (M, t) = M
dn

dM
(t) ∼ ν(t) e−ν2(t)/2 (17)

with

ν(t) =
δc

σ(M, t)
=

δc

D(t)σinit(M)
=

a(tinit)

a(t)
νinit (18)

recall: σinit(M) decreases with M Q: why?

So to find time change: just take derivative

Ṅ ∼ |ν̇|(ν2 − 1)e−ν2/2 ∼ creation− destruction (19)

Q: merging for large, small ν? large, small M?

1
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at fixed time t

Ṅ ∼ |ν̇|(ν2 − 1)e−ν2/2 (20)

small M → largest σ: ν = δc/σ(m) < 1

Ṅ > 0: net destruction

and so large M → net creation – at expense of small objects

PS Application II: Quasar Abundance

• Quasars must be massive (Eddington limit) black holes

at galaxy centers → demands Mgal > Mbh
>∼ 1012M⊙

• Quasars found out to high redshift z > 3 (in fact >∼ 7)

PS: can find number density of objects with M > 1012M⊙
at epoch z = 3

ncom(> 1012M⊙; z = 3) =
∫

1012M⊙
dn

dM
dM ∼ 10−8 Mpc−3 (21)

about right!

1
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Recombination Re-Revisited

so far: theory of small-scale CMB anisotropies worked in k space

• before recombination: modes are standing waves

• CMB records phase at recombination

but can also work in real space

• consider a single localized overdensity

• initially adiabatic

δm(tinit) = δb(tinit) = δγ(tinit) = δν(tinit) (22)

Q: pre-recombination initial behavior of the dark matter?

baryons & photons? neutrinos?

Q: interesting scale(s)?1
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Before Recombination/Decoupling www: simulations

dark matter: cold, pressureless

overdensity grows with time, drawing in surrounding matter

baryon/photon fluid: high-pressure

fluid sees large pressure gradient: drives forces that try to smooth

• overdense, pressurized region propagates out at speed cs
• generates a shell of comoving radius rcom ∼ csη
• shell continues until recombination, when radius is

rshell,com =

∫

csdη ≈ csηdec ∼ 150 Mpc (23)

neutrinos: hot, pressureless

fly out at speed c from overdensity

continue until nonrelativistic

Q: post-recombination/decoupling behaviors?

Q: effect of DM on baryon/photon fluid? on neutrinos?

1
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At decoupling: baryonic “rings” at rshell,com ≈ csηdec ∼ 150 Mpc

After Recombination/Decoupling www: simulations

baryon/photon fluid: attracted by central DM potential

• nearby baryons falls in

• distant ring feature remains

dark matter: attracted by baryonic feature at rshell,com
• DM also forms rings at rshell,com
• overdensity lower than center by ∼ Ωb/Ωm ∼ 1/7

neutrinos: attracted to overdensities

but while relativistic, smooth perturbations

Q: what if many local perturbations? observable signature?

1
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Baryon Acoustic Oscillations

around recombination, perturbations still linear

• density field well-described by superposition

• overdensities all surrounded by rings at rshell,com
• randomness of initial field obscures ring patterns

• but still excesses of mater 150 Mpc away from other excesses

⇒ correlations are observable!

in real space: correlation function

ξ(r) = 〈δ(~x) δ(~x+ ~r)〉 (24)

Q: what should we see?

www: SDSS data

in k space: power spectrum

sharp feature in real-space → oscillations in P(k)

Q: why is this incredibly powerful?
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Director’s Cut Extras

2
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Press-Schechter II: Excursion Sets

More sophisticated (and insightful) derivation of same result

Sketch of procedure:

1. given initial density field and (Gaussian) filter window

2. pick a point ~x in space, filter over neighborhood R, mass

M(R)

3. scan down in mass: at M→∞, σ(M)→0 Q: why?

and so filtered δ(~x)M = 0

3. as M decreases, σ(M) increases

filtered δ(~x)M 6= 0, alternates sign, amplitude

⇒ δ(~x)M is a random walk vs σ(M)! exactly!

4. can ask: at which M does δ(~x)M first cross threshold δc
⇒ this sets M of structure containing point ~x

5. repeat for all ~x and average → PS distribution follows!

Q: limitations/implicit assumptions?
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