Astro 507
Lecture 41
May 5, 2014

Announcements:

e Final Preflight posted, due next Wednesday 9am
fun, optional, easy bonus points

e ICES available online — please do it!

Final Problem Set (PS7): Due Thurs May 15
e takes place of final exam

e open book, notes, web

e but: do not collaborate!

Vote: how long do you want the PS?
(a) 1 week

(b) 3 days

(c) 2 days

(d) 1 day
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LLast time: spherical collapse

idealized initial conditions
“top hat” Universe

e spherical, uniform density o, background universe

e embedded in flat, matter-dom universe
with “background” density ppq
(“compensated” by surrounding
underdense shell)

spherical collapse model a cosmological

workhorse

a nonlinear problem with analytic solution!

P>p,,

Q: what is special/magical about this setup?
Q. qualitative results?
Q. wWhy useful? limitations?



Spherical Collapse: Quantitative Lessons

want overdensity: since p < 1/a3
t 3
5(t) = p(t) _1:<“ﬂ) 1
Pbg(t) a

with apg o t2/3 the matter-dom background
— exact nonlinear solution (pre-virial)

For small ¢, to first order a(t) ~ t2/3 = apy(t):
background result; §(¢t) =0

to second order: a(t) = apg(t)[1 — (127t /tco)?/3/20]

2/3
3 (127wt
50 % o (1) = i)

5(t) o D(t) x t2/3 x any Same as linear result!
bg
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Very useful result:

3
ap
Snonlin(t) (a gl ) —1
nonlin

3 [127t)\2/3
Sin(t) = 20 7o
CcO

connects full nonlinear result with linear counterpart
— maps between the two

E.g., at turnaround

5non|in = (671‘)2/43 = 5.6, but 5”” = 1.06
at virialization (PS6):

dnonlin =~ 180, but 9§, = 1.69

— defines a critical linear overdensity
Q. why useful?

(3)

(4)
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Strategy: given initial linear density field §;

e evolve perturbations with linear growth 6,i,(t) = D(t)/6;

e identify linearly extrapolated perturbations with §;,(¢) > 1.69
= these will be collapsed objects by time t!

collapsed

lesson: in linearized 6y (to)
a ‘“‘cut” at é.
divides virialized vs nonvirialized

not collapsed

linearized density contrast

position

also: in a nonlinear field, can use dyj ~ 180
as working definition of collapsed structure
good for comparing theory, observation Q: procedure?



Nonlinear Evolution: Lessons from Spherical Collapse

Qualitatively
> overdensity evolves as closed ‘subuniverse”
> starts expanding, but slower than cosmic background
pulls away from Hubble flow: reach max expansion, then
turnaround
> virialize — form bound object
> no further expansion, except due to accretion, merging

Quantitatively

> can compute both §,;,(¢) and exact 6(t)
gives mapping from easy to (more) correct

> collapse/virialization when |§;j, = 1.69 and § = 1872 ~ 180
recipe for forecasting structures in initial field djnit < 1
recipe for defining halos: region surrounding density peak

o and having overdensity dp/p ~ 180

Given these, can devise analytical tools to describe
distribution of structures




Press-Schechter Analysis

Outlook

adopt hierarchical picture (i.e., some form of CDM)

= matter at every point belongs to some structure

over time: go from many small structures to fewer, larger ones

Goal
Given properties of density field—i.e., Ppit(k) and P(k,t) = Tkz(t)Pmit(k)
Compute distribution of structures as function of mass, time

Quantitatively: want “mass function”
comoving number density of structures
in mass range (M, M + dM):
dncom
(M, ) (5)
from this, can compute many other things
e.g., density in (M, M + dM) Q: which is...7




Press-Schechter Ingredients/Assumptions

e given mass M, filter density field
on comoving length R such that M = 47/3 ppg com(t) R>
density contrast has variance o2(M) = [ P(k) W (k: R) d3k

e in linear regime, density field obeys Gaussian statistics:
in filtered field, probability of finding contrast in (dyin, jin + ddjin):

1 52
P(6)in; M, t) déjin = exp [— in ] dojin  (6)
\/27TO‘2(M,t) 202(M,t)

why only good in linear regime Q: why?

e Spherical collapse model maps from linear — nonlinear

identifies linear contrast threshold §. ~ 1.69 for collapsed objects
note: é. is time indep! (in EAS cosmo)

= can find fraction of cosmic mass in objects of mass M

Q. how?



fraction of mass or of comoving volume
in collapsed objects of mass M at timet is

f(>0c, M, t) = /OO P(djin; M, t) djin (7)
_ 1 o0 S
1 oo 2 1 Oc
~ V2r Joovze = erfe [\/ﬁa(M,t)] (9)

e for realistic P(k), o2(M) ~ [k3P(k)W.(M)dk/k ~ M—(n+3)/3
— at fixed mass, o(M,t) monotonically decreases with M
(down to some minimum M cutoff)

e o(M,t) evolves (linearly) as o ~a(t) ~1/(1 + z)

o Q: implications for mass distribution at fixed time?
Q. implications for structure formation over time?
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Press-Schechter: mass fraction and structure formation

1 00 2 1 de
oM, t) = —— Y —erf
f(>46 t) Ner 56/\/506 erfc [\/_O'(M 5

mass distribution at fixed t¢:
as filter mass M decreases, variance o(M) increases
> more large fluctuations — more above threshold
> more structures at smaller masses
i.e., 6¢/v/20(M) decreases — larger f
= smallest halos most numerous — hierarchy of masses!

] (10)

time evolution at fixed M:
at time, scale factor increases, variance o(t) o< a(t) increases
> more structures at fixed mass
> small structures merge — larger (at expense of smallest)
— hierarchical clustering!
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Press-Schechter Mass Function I: Quick-n-Dirty

Press & Schechter (1974):

note that structures can only be made from overdensities

but underdensities (voids) occupy mass fraction f(§;, < 0) =1/2
so fraction of overdensites in collapsed objects of M is

F(> 60 M, 1) = LM >0) _ 5pis o 5 (11)

f(31in > 0)

famous factor of two!

Compare mass fraction at M and M + dM: difference

AF = F(M 4 dM) — F(M) ~ j—j\i M (12)

g dO‘(M)_]' dc _52/202(1\4)
(77) M o(M) aM (13)
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But probability of finding structure M in filter volume Vecom =

M/ ppg is
d M d
dF(M) =V 22 am = 2 am (14)

and so PS mass function is

Md_nzpﬂ Md_F: 2 dino(M)~* 4 Pbg —62/20%(M)
dM M dM T dln M o(M) M
e implicitly also a function of t via ppg(t) and o(M, 1)
e encodes and quantifies hierarchical clustering

from this can immediately find, e.g., distribution of (comoving)
density across masses of collapsed objects:

dp(M)_Mdn
dM T dM

(15)



Press-Schechter: Summary

Quantitative Output
* Easy to use, very powerful (semi-)analytic mass function

Qualitative Worldview/Limitations
* every point lies in exactly one structure:
largest above threshold
* all structures have §|j; = d.: born today!
*x PS blind to interior substructure
and formation history of a given object

Q: how to test PS theory?
Q. which structures should be best described? worst?

=
w
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Tests of Press-Schechter

Versus Numerical Simulations

PS is idealized analytic approximation of hierarchical clustering
assumes true density field § perfectly mapped onto

linear field §,;n, Vvis spherical collapse model

Even if underlying CDM, hierarchy idea right, PS approximate
— test against numerical simulations w/ non-ideal § field
results: unreasonably good agreement!

Versus Observations
Best applicable to those just formed: o(R) ~og ~ 1
— galaxy clusters! M ~ 101° My, and so PS gives

dn  po
am M
about right! (where v = §./v/20 ~ 1)

...and works unreasonably well at other scales too

n(M) ~ M

e V22 pﬁo ~ 10~% Mpc~3 (16)
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Applications of Press-Schechter

Mergers

PS very powerful because gives mass function vs time:

dn 2
= - ~ L (t)/2
N(M,1t) MdM (t) ~v(t) e

with
v(t) = 5— Oc — a(ti—”it)y. .
o(M,t) ~ D@)oint(M) ~ a(t) M

recall: ojnit(M) decreases with M Q: why?

So to find time change: just take derivative
. 2
N ~ 0|2 = 1)e ™ /2 ~ creation — destruction

Q. merging for large, small v7 large, small M7

(17)

(18)

(19)
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at fixed time ¢
N~ 2|2 = 1)e /2 (20)

small M — largest o: v =968./c(m) < 1
N > 0: net destruction
and so large M — net creation — at expense of small objects

PS Application II: Quasar Abundance

e Quasars must be massive (Eddington Iimit) black holes
at galaxy centers — demands Mgy > Mp, & 1012Mg

e Quasars found out to high redshift z > 3 (in fact & 7)

PS: can find number density of objects with M > 10120
at epoch 2 =3

dn
> 101207 2 = 3 =/ A IM ~ 1078 Mpc—3 (21
ncom( 1 2 ) 1012M@ N P ( )

about right!
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Recombination Re-Revisited

so far: theory of small-scale CMB anisotropies worked in k space
e before recombination: modes are standing waves
e CMB records phase at recombination

but can also work in real space
e consider a single localized overdensity
e initially adiabatic

dm(tinit) = dp(tinit) = oy (Einit) = v (tinit) (22)

Q. pre-recombination initial behavior of the dark matter?
baryons & photons? neutrinos?
Q: interesting scale(s)?



Before Recombination/Decoupling www: simulations

dark matter: cold, pressureless
overdensity grows with time, drawing in surrounding matter

baryon/photon fluid: high-pressure

fluid sees large pressure gradient: drives forces that try to smooth
e overdense, pressurized region propagates out at speed cs

e generates a shell of comoving radius rcom ~ csn

e shell continues until recombination, when radius is

Tshell,com — /Csdn X Cshdec ~ 150 MpcC (23)

neutrinos: hot, pressureless
fly out at speed ¢ from overdensity
continue until nonrelativistic

@ Q: post-recombination/decoupling behaviors?
Q: effect of DM on baryon/photon fluid? on neutrinos?
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At decoupling: baryonic “rings” at rgnell.com = Cshdec ~ 150 MpC
After Recombination/Decoupling www: simulations

baryon/photon fluid:. attracted by central DM potential
e Nnearby baryons falls in
e distant ring feature remains

dark matter: attracted by baryonic feature at rgnej.com
e DM also forms rings at Tshell,com
e overdensity lower than center by ~ Q,/Qm ~ 1/7

neutrinos: attracted to overdensities
but while relativistic, smooth perturbations

Q. what if many local perturbations? observable signature?



Baryon Acoustic Oscillations

around recombination, perturbations still linear

e density field well-described by superposition

e overdensities all surrounded by rings at rgnell.com
e randomness of initial field obscures ring patterns

e but still excesses of mater 150 Mpc away from other excesses
= correlations are observable!

in real space: correlation function

E(r) = (6(X) o(Z+ 7)) (24)
Q. what should we see?
www: SDSS data

N in k space: power spectrum
© sharp feature in real-space — oscillations in P(k)
Q. why is this incredibly powerful?
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Director’'s Cut Extras




[

Press-Schechter II: Excursion Sets
More sophisticated (and insightful) derivation of same result

Sketch of procedure:
1. given initial density field and (Gaussian) filter window
2. pick a point £ in space, filter over neighborhood R, mass
M(R)
3. scan down in mass: at M—oo, o(M)—0 Q: why?
and so filtered §(Z)y; = O
3. as M decreases, o(M) increases
filtered 6(Z¥) s # 0, alternates sign, amplitude
= 0(Z¥) s is a random walk vs o(M)! exactly!
4. can ask: at which M does §(&),, first cross threshold .
= this sets M of structure containing point &
5. repeat for all £ and average — PS distribution follows!

Q: limitations/implicit assumptions?



