
Astro 507

Lecture 9

Feb. 10, 2014

Announcements:

• Preflight 2 due next Friday, 9am

I. Discussion (public)

II. Reading response

Cosmology talks this week:

• Astro Colloquium, Tues. 3:45pm, Astr 134

Kim Coble, Chicago State University

cosmology in the transformation of undergraduate teaching

• Astro Theory Seminar, Wed. noon, Loomis 464

Keith Bechtol, U. Chicago

extragalactic γ-ray background, MW satellite galaxies
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Last time:

• spacetime–Aristotle to Galileo/Newton to Einstein

• the interval Q: namely? significance?

• equivalence principle Q: namely?

• rocket gedankenexperiment

Q: implications for light trajectory?

Q: implications for photon frequency/wavelength/energy?

Q: implications for clocks?
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Equivalence Principle: in uniform gravity g

→ same results as rocket accelerating with a = g

• gravity bends light!

www: strong lensing

• gravitational redshift/blueshift!
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Lesson: gravity distorts

• light path = space

• apparent frequency = time

→ gravity alters spacetime!

Einstein (1915): include gravity in spacetime
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General Relativity

Newton (1687): Universal Gravitation

gravity is a force (field) that couples to mass

⊲ matter tells gravity how to force

⊲ gravity force tells matter how to move

Einstein (1915): General Relativity

gravity is spacetime curvature: not a force!

⋆ “matter tells spacetime how to curve

⋆ spacetime tells matter how to move” –J. .A. Wheeler

Curved Spacetime?

Curved space: geometric constructions in space

(triangles, rectangles, circles... Q: how define?)

give non-Euclidean results Q: namely?

Q: so–curved spacetime?
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Spacetime Curvature

Test: (Feynman Lectures II, Chapter 42)

• construct geometric object in spacetime

• are properties Euclidean?

Case 1: Minkowski Space (i.e., special relativity, no accel)

(1-D) interval (“line element”) for events separated by (dt, dx)

ds2 = dt2 − dx2 (3)

Construct rhombus: in spacetime

two observers go from events A to B

⊲ obs 1: go left at v = 0.5c for 10 s, then wait 10 s

⊲ obs 2: wait 10 s, then go left at v = 0.5c for 10 s

Q: spacetime diagram?
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Minkowski Spacetime:  Flat

result is Euclidean Q: why?

⇒ Minkowski spacetime is not curved = flat6



Case 2: Surface of Earth (i.e., const accel: gravity)

(1-D) line element:

ds2 =

(

1 +
2φ

c2

)

dt2 −

(

1 +
2φ

c2

)−1

dx2 (4)

where φ = φ(x): time-independent Newtonian potential

Construct rhombus in spacetime

two observers go from events A to B

⊲ obs 1: go up 1 km, then wait 10 s

⊲ obs 2: wait 10 s, then go up 1 km

Q: spacetime diagram?
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Earth’s Spacetime:  Curved
h

result is not Euclidean:

(wait time) = (δs)wait =
√

1+ 2gh/c2 (δt)wait (5)

why? waiting time “advance differently” – time dilation!

⇒ Earth’s spacetime is curved!

gravity ⇔ spacetime curvature
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GR on a T-Shirt

General Relativity spirit and approach:

like special relativity, only moreso

Special Relativity concepts retained:

• spacetime: events, relationships among them

• interval gives observer-independent (invariant)

measure of “distance” between events

• Special Relativity is a special case of GR

SR: no gravity → no curvature → “flat spacetime”

GR limit: gravity sources→0 give spacetime→Minkowski

GR: Special Relativity concepts generalized

• gravity encoded in spacetime structure

• spacetime can be curved

• coordinates have no intrinsic meaning
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The Metric

Fundamental object in GR: metric

consider two nearby events, separated by

coordinate differences dx = (dx0, dx1, dx2, dx3)

GR (in orthogonal spacetimes) sez:

interval between them given by “line element”

ds2 = A(x) (dx0)2 −B(x) (dx1)2 − C(x) (dx2)2 −D(x) (dx3)2

≡
∑

µν
gµνdx

µdxν ≡ gµνdx
µdxν

where the metric tensor gµν

• in this case (orthogonal spacetime): g = diag(A,B,C,D)

• components generally are functions of space & time coords

• is symmetric, i.e., gµν = gνµ

• encodes all physics (like wavefunction in QM)

Q: if no gravity=Minkowski, what’s the metric?
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physical interpretation of interval: like in SR

ds2 = (apparent elapsed time)2

− (apparent spatial separation)2

⋆ observers have timelike worldlines: ds2 > 0

⋆ light has null ds = 0 worldlines

Simplest example: Minkowski space (Special Relativity)

gµν = diag(1,−1,−1,−1): constant values
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proper spatial distances:

• i.e., results using meter sticks

• measured simultaneously (dx0 = 0)

length element:

dℓ2 = −ds2 = dℓ21 + dℓ22 + dℓ23 = g11(dx
1)2 + g22(dx

2)2 + g33(dx
3)2

space (3-)volume element:

dV3 = dℓ1dℓ2dℓ3

=
√

|g11g22g33| dx
1dx2dx3

spacetime 4-volume element:

dV4 = dℓ0dV3 =
√

|g00g11g22g33| dx
0dx1dx2dx3

=
√

|det g| dx0dx1dx2dx3
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Example: Minkowski space, Cartesian coords

ds2 = dt2 − dx2 − dy2 − dz2

length: dℓ2 = dx2 + dy2 + dz2

3-volume: dV3 = dx dy dz

4-volume: dV4 = dx dy dz dt

Example: Minkowski space, spherical coords

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2

length: dℓ2 = dr2 + r2(dθ2 + sin2 θdφ2)

3-volume: dV3 = r2 sin θ drdθdφ ≡ r2drdΩ

4-volume: dV4 = r2drdΩdt
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Relativistic Cosmology
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Cosmological Spacetimes

Want to describe spacetime of the universe

to zeroth order: homogeneous, isotropic

1. at each spacetime point

exactly one observer sees isotropy∗

call these fundamental observers

roughly: “galaxies” i.e., us

(strictly speaking, we don’t qualify) Q: why?

2. isotropy at each point → homogeneity

but can be homogeneous & not isotropic

∗We will see: observers moving w.r.t. FOs eventually come to rest w.r.t. FOs
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3. homogeneity and isotropy → symmetries

U. is “maximally symmetric”

→ greatly constrain allowed spacetimes

i.e., allowed metrics
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The Cosmic Line Element

cosmological principle:

can divide spacetime into time “slices”

i.e., 3-D spatial (hyper) surfaces

⊲ populated by fundamental observers

⊲ with coords, e.g., (t, x, y, z)

⊲ choose FO’s to have d~x = 0

i.e., spatial coords are comoving (“fixed to expanding grid”)

on surface: fundamental observers must all have

ds2 = dt2 → i.e., gtt = const = 1 Q: why?

→ gtt indep of space, time

these give:

ds2 = dt2 − gii(dx
i)2 (6)
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Cosmological Principle and the Cosmic Metric

homogeneity and time

no space dependence on dℓ0 = dt

• can define cosmic time t (FO clocks)

• at fixed t, time lapse dt not “warped”across space

homogeneity and space

• at any t, properties invariant under translations

• no center

• can pick arbitrary point to be origin

• e.g., here!
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Cosmological spacetime encoded via cosmic metric

which determines how the interval depends on coordinates

any observer computes interval between events as

ds2 = (elapsed time)2 − (spatial displacement)2

Cosmic metric so far:

ds2 = dt2 − gii(dx
i)2 (7)

where: t is cosmic time

now impose isotropy

• at any cosmic t, interval invariant under rotations

• pick arbitrary origin, then (comoving) spherical coords

the usual r, θ, φ, with r2 = x2 + y2 + z2

and arbitrary origin (usually, but not always, here!)

Q: now that does metric look like?
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For fundamental observers, maximal symmetry

demands metric which can∗ be written as:

ds2 = dt2 − a(t)2dℓ2com (8)

= dt2 − a(t)2
[

f(r)dr2 + r2(dθ2 + sin2 θdφ2)
]

(9)

a(t) is the cosmic scale factor

f(r) is as yet undetermined

• for flat (Euclidean) space, f(r) = 1

• so f 6= 1 → non-Euclidean spatial geometry = curved space!

Q: why same time dep for radial and angular displacements?

Note power of cosmo principle

→ only allowed dynamics is uniform expansion a(t)!

∗other space & time coordinates possible and sometimes useful

but in all cases space and time must factor in this way
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