Today's ASTR 507 Cosmo Café Special: Relativisitic Gastrophysics!

- Get a gut feeling for cosmic geometry!
- All three tasty possibilities available:
 - ⊳ flat
 - > positively curved
 - > **negatively** curved
- Try 'em all!

Bon appetit!

Astro 507 Lecture 10 Feb. 12, 2014

Announcements:

- Preflight 2 due Friday, 9am
 - I. Discussion (public)
 - II. Reading response

Last time: Relativistic Cosmology

cosmic spacetimes: maximally symmetric

Q: fundamental observers?

Q: comoving coordinates?

Q: cosmic time?

oday:

- cosmic geometry
- Friedmann-Lemaître-Robertson-Walker (FLRW) metric
- physics in a FLRW universe

Cosmological Principle and Cosmic Spacetime

Executive Summary

Cosmo Principle → at any time, space is maximally symmetric

- strongly restricts allowed spacetime structure
- there exist a set of fundamental observers (FOs)
 (or "frames" or "coordinate systems")
 who see U as homogenous and isotropic
- FOs "ride on" or are at rest w.r.t. comoving coordinates which don't change with expansion but do of course physically move apart
- FO clocks all tick at same rate, measure cosmic time t

Note: in a generic spacetime, not possible to "synchronize clocks" in this way

Curvature

maximal symmetry requires that Universe spatial "3-volume" is a "space of constant curvature"

at any time t: cosmic curvature is a length $\mathcal{R}(t)$

- today: $\mathcal{R}(t_0) \equiv R$
- Q: dependence on scale factor?

For the relativists: max symmetry means *spatial* curvature tensor must take the form

$$R_{ijk\ell}^{(3)} = \frac{\kappa}{\mathcal{R}(t)^2} \left(h_{ik} h_{jl} - h_{jk} h_{il} \right) \tag{1}$$

where $\kappa = -1$, 0, or +1 and h is the spatial part of metric g

Note: the curvature scalar is really one single number K but for $K \neq 0$ one can identify a sign $\kappa \equiv K/\|K\|$ and lengthscale $\mathcal{R}^2 \equiv 1/\|K\|$

Spaces of Constant Curvature

Amazing mathematical result: despite enormous constraints of maximal symmetry GR does not demand cosmic space to be flat (Euclidean) as assumed in pre-relativity and special relativity

GR allows three classes of cosmic spatial geometry each of which is a space of constant (or zero) curvature

- positive curvature → hyper-spherical
- negative curvature → hyperbolic
- zero curvature → flat (Euclidean)

www: cartoons

All of these are *allowed* by GR and maximal symmetry but *our* universe can have only *one* of them Q: how do we know which of these our U has "chosen"?

Positive Curvature: A (Hyper-)Spherical Universe

to get an intuition: consider ordinary sphere ("2-sphere") using coordinates in Euclidean space ("embedding") sphere defined by

$$(x, y, z) \in x^2 + y^2 + z^2 = R^2 = const$$
 (2)

Coordinates on the sphere:

- usual spherical coords: center, origin outside of the space
- we will use coordinates with origin in the space more convenient, closer to the physics *Q: why?*

origin: at north pole
$$(x, y, z) = (0, 0, +R)$$

r distance from z-axis $r \Leftrightarrow \text{latitudes}$ $r^2 = x^2 + y^2 = R^2 - z^2$

 $[\theta]$ angle from x axis $\theta \to \text{longitude}$

$R\chi$

arclength on sphere from pole χ is usual spherical polar angle

2-sphere metric:

in 3-D embedding space: $d\ell^2 = dx^2 + dy^2 + dz^2 = dr^2 + r^2 d\theta^2 + dz^2$ but points, intervals constrained to lie on sphere:

$$R^2 = r^2 + z^2 = const$$

$$d(R^2) = 0 = xdx + ydy + zdz = rdr + zdz$$
 so
$$dz = -rdr/z \rightarrow \text{can eliminate } z$$

thus in polar coords with origin at N Pole

$$d\ell^{2} = dr^{2} + r^{2}d\theta^{2} + dz^{2} = \left(1 + \frac{r^{2}}{R^{2} - r^{2}}\right)dr^{2} + r^{2}d\theta^{2}$$
(3)
$$= \left(\frac{R^{2}}{R^{2} - r^{2}}\right)dr^{2} + r^{2}d\theta^{2} = \frac{dr^{2}}{1 - r^{2}/R^{2}} + r^{2}d\theta^{2}$$
(4)

not the Euclidean expression!

• curved space: curvature $R^2 = const!$

Exploring Sphereland

coordinates for (2-D) observers on sphere, centered at N Pole:

$$d\ell^2 = d\ell_r^2 + d\ell_\theta^2 = \frac{dr^2}{1 - r^2/R^2} + r^2 d\theta^2 = R^2 d\chi^2 + R^2 \sin^2 \chi \, d\theta^2$$

N Pole inhabitant (2-Santa) measures radial distance from home:

$$d\ell_r = dr/\sqrt{1 - r^2/R^2} \equiv Rd\chi$$

 $\rightarrow \text{ radius is } \ell_r = R\sin^{-1}(r/R) \equiv R\chi$

Example: construct a circle

locus of points at same radius ℓ_r

- circumference $dC = d\ell_{\theta} = rd\theta = R \sin \chi d\theta$ $\rightarrow C = 2\pi R \sin \chi < 2\pi \ell_r$
- area $dA = d\ell_r d\ell_\theta = R^2 \sin \chi \, d\chi d\theta$ $\to A = 2\pi R^2 (1 - \cos \chi) < \pi \ell_r^2$

Q: why are these right?

3-D Life in a 4-D Sphere

generalize to 3-D "surface" of sphere in 4-D space ("3-sphere"), constant positive curvature R: 3-D spherical coordinates centered on "N pole"

spatial line element

$$d\ell^2 = \frac{dr^2}{1 - r^2/R^2} + r^2 d\theta^2 + r^2 \sin^2\theta d\phi^2$$
 (5)

- sky still has solid angle $d\Omega = \sin\theta d\theta d\pi$, $\int d\Omega = 4\pi$
- radial (proper) distance $\Delta \ell_r = R \sin^{-1}(r/R) \equiv R \chi$
- so we have found, for $\kappa = +1$, RW metric has $f(r) = 1/(1 r^2/R^2)$

Q: guesses for zero, negative curvature metrics?

Friedmann-Lemaître-Robertson-Walker Metric

Robertson & Walker: maximal symmetry imposes metric form

Robertson-Walker line element (in my favorite units, coords):

$$ds^{2} = dt^{2} - a(t)^{2} \left(\frac{dr^{2}}{1 - \kappa r^{2}/R^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right)$$

where cosmic geometry encoded via κ :

$$\kappa = \begin{cases} +1 & \text{pos curv: "spherical"} \\ 0 & \text{flat: "Euclidean"} \\ -1 & \text{neg curv: "hyperbolic"} \end{cases}$$
 (6)

Friedmann-Lemaître-Robertson-Walker Cosmology

```
Friedmann & Lemaître: solve GR dynamics (Einstein equation) for stress-energy of "perfect fluid" (no dissipation)
```

The Einstein Equation and Robertson-Walker

```
Einstein eq: R_{\mu\nu}-1/2\,Rg_{\mu\nu}=8\pi GT_{\mu\nu} derivatives in Einstein eq come from curvature tensor R_{\mu\nu}\to \infty schematically: "R\sim\partial^2 g\sim G\rho" — like Newtonian Poisson eq but the only undetermined function in the metric is the scale factor a, which only depends on t: so: Einstein eqs \to ODEs which set evolution of a(t) \Rightarrow these are the Friedmann equations! and: in RW metric, local energy conservation \nabla_{\nu}T^{\mu\nu}=0 \Rightarrow gives 1st Law: d(\rho a^3)=-pd(a)^3 More detail in today's Director's Cut Extras
```

Life in a FRLW Universe

FLRW metric + Friedmann eqs for a(t)

→ all you need to calculate anything particle motions, fluid evolution, observables...

Excellent first example: Propagation of light

We want to know

- photon path through spacetime
- ullet evolution of photon λ, E during propagation
- detected redshift

Q: how to calculate these?

₩ Q: relevant equations?

Q: coordinate choices?

Worked Example: Photon Propagation

photon path: radial null trajectory ds = 0 (Fermat)

- \star emitted at $r_{\rm em}$, $t_{\rm em}$
- \star observed at $r_{\rm obs} = 0$, $t_{\rm obs}$

for FOs at $r_{\rm em}$ and $r_{\rm obs} = 0$, any $t_{\rm em}$ and $t_{\rm obs}$ pairs have

$$\int_{t_{\rm em}}^{t_{\rm obs}} \frac{dt}{a(t)} = \int_{0}^{r_{\rm em}} \frac{dr}{\sqrt{1 - \kappa r^2/R^2}}$$
 time-dep time-indep

Since RHS is time-independent Q: why? then any two pairs of emission/observation events between comoving points $r\rightarrow 0$ must have

$$\int_{t_{\text{em},1}}^{t_{\text{obs},1}} \frac{dt}{a(t)} = \int_{t_{\text{em},2}}^{t_{\text{obs},2}} \frac{dt}{a(t)}$$
 (7)

consider two sequential emission events, lagged by $\delta t_{\rm em}$ subsequently seen as sequential observation events with $\delta t_{
m obs}$

time-independence of propagation integral means

$$\int_{t_{\text{em}}}^{t_{\text{obs}}} \frac{dt}{a(t)} = \int_{t_{\text{em}}+\delta t_{\text{em}}}^{t_{\text{obs}}+\delta t_{\text{obs}}} \frac{dt}{a(t)}$$

rearranging...

$$\int_{t_{\text{em}}}^{t_{\text{em}} + \delta t_{\text{em}}} \frac{dt}{a(t)} = \int_{t_{\text{obs}}}^{t_{\text{obs}} + \delta t_{\text{obs}}} \frac{dt}{a(t)}$$

if δt small (Q: compared to what?)

then $\delta t_{\rm em}/a(t_{\rm em}) = \delta t_{\rm obs}/a(t_{\rm obs})$ and so

$$\frac{\delta t_{\text{obs}}}{\delta t_{\text{em}}} = \frac{a(t_{\text{obs}})}{a(t_{\text{em}})}$$

© Q: observational implications?

Observational implications:

★ for *any* pairs of photons

$$\frac{\delta t_{\text{obs}}}{\delta t_{\text{em}}} = \frac{a(t_{\text{obs}})}{a(t_{\text{em}})} = \frac{1 + z_{\text{em}}}{1 + z_{\text{obs}}}$$

and since $a(t_{obs}) > a(t_{em})$

- $\rightarrow \delta t_{\rm obs} > \delta t_{\rm em}$
- → distant happenings appear in slow motion!
- → time dilation!

cosmic time dilation recently observed!

Q: how would effect show up?

Q: why non-trivial to observationally confirm?

www: cosmic time dilation evidence

Director's Cut Extras For Relativists

Perfect fluid:

- "perfect" → no dissipation (i.e., viscosity)
- stress-energy: given density, pressure fields ρ, p and 4-velocity field $u_{\mu} \rightarrow (1, 0, 0, 0)$ for FO

$$T_{\mu\nu} = \rho u_{\mu}u_{\nu} + p(g_{\mu\nu} - u_{\mu}u_{\nu}) \tag{8}$$

$$= \operatorname{diag}(\rho, p, p, p)_{FO} \tag{9}$$

Recall: stress-energy conservation is

$$\nabla_{\nu} T^{\mu\nu} = 0 \tag{10}$$

where ∇_{μ} is covariant derivative For RW metric, this becomes:

$$d(a^3\rho) = pd(a^3) \tag{11}$$

1st Law of Thermodynamics!

Einstein equation

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$
 (12)

Given RW metric (orthogonal, max symmetric):

- Q: how many nonzero Einstein eqs generally? here?
- Q: what goes into $G_{\mu\nu}$? what will this be for RW metric?

Einstein eq:

```
G_{\mu\nu}, T_{\mu\nu} symmetric 4×4 matrices \rightarrow 10 independent components in general, Einstein \rightarrow 10 equations but cosmo principle demands: space-time terms G_{0i}=0 and off-diagonal space-space G_{ij}=0 else pick out special direction \Rightarrow only diagonal terms nonzero and all 3 "p" equations same
```

Einstein \rightarrow two independent equations

$$G_{00} = 3\left(\frac{\dot{a}}{a}\right)^2 + \frac{3\kappa}{R^2 a^2} \tag{13}$$

$$= 8\pi G T_{00} = 8\pi G \rho \tag{14}$$

$$G_{ii} = 6\frac{\ddot{a}}{a} + 3\left(\frac{\dot{a}}{a}\right)^2 + \frac{3\kappa}{R^2a^2}$$
 (15)

$$= 8\pi G T_{ii} = 8\pi G p \tag{16}$$

After rearrangement, these become the Friedmann "energy" and acceleration equations!