Today’s ASTR 507 Cosmo Café Special:
Relativisitic Gastrophysics!

Get a gut feeling for cosmic geometry!
All three tasty possibilities available:
> flat

> positively curved
> negatively curved

Try 'em alll

Bon appetit!



Astro 507
Lecture 10
Feb. 12, 2014

Announcements:

e Preflight 2 due Friday, 9am
I. Discussion (public)
II. Reading response

LLast time: Relativistic Cosmology
cosmic spacetimes: maximally symmetric
Q. fundamental observers?

Q. comoving coordinates?

Q. cosmic time?

oday:

e COSMic geometry

e Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
e physics in a FLRW universe



Cosmological Principle and Cosmic Spacetime
Executive Summary

Cosmo Principle — at any time, space is maximally symmetric
e strongly restricts allowed spacetime structure
e there exist a set of fundamental observers (FOs)
(or “frames” or ‘coordinate systems”)
who see U as homogenous and isotropic
e FOs ‘“ride on” or are at rest w.r.t. comoving coordinates
which don’t change with expansion
but do of course physically move apart
e FO clocks all tick at same rate, measure cosmic time ¢

Note: in a generic spacetime, not possible to ‘‘synchronize clocks”
in this way



Curvature

maximal symmetry requires that Universe spatial “3-volume”
is a ‘‘space of constant curvature”

at any time ¢: cosmic curvature is a length R(t)
e today: R(tg) = R
e (U dependence on scale factor?

For the relativists: max symmetry means spatial
curvature tensor must take the form
3 _ kK
R5ke = R()2 <hikhjl - hjkhil) (1)
where k = —1, O, or +1
and h is the spatial part of metric g

Note: the curvature scalar is really one single number K

but for K # 0 one can identify a sign « = K/||K|| and lengthscale R? = 1/||K||



Spaces of Constant Curvature

Amazing mathematical result:

despite enormous constraints of maximal symmetry

GR does not demand cosmic space to be flat (Euclidean)
as assumed in pre-relativity and special relativity

GR allows three classes of cosmic spatial geometry
each of which is a space of constant (or zero) curvature
e positive curvature — hyper-spherical

e Negative curvature — hyperbolic

e zero curvature — flat (Euclidean)

WWW: cartoons

All of these are allowed by GR and maximal symmetry
but our universe can have only one of them
Q. how do we know which of these our U has ‘chosen’ ?



Positive Curvature: A (Hyper-)Spherical Universe

to get an intuition: consider ordinary sphere (“2-sphere’)
using coordinates in Euclidean space (“embedding’)
sphere defined by

(z,y,2) € x°4y°+ 22 = R? = const (2)

Coordinates on the sphere:
e usual spherical coords: center, origin outside of the space
e we Wwill use coordinates with origin in the space

more convenient, closer to the physics Q: why?



origin|: at north pole
(z,y,2) = (0,0,+R)

r| distance from z-axis
r < latitudes
r2=x2+y2:R2—22

0| angle from x axis
6 — longitude

Rx
arclength on sphere from pole
x IS usual spherical polar angle
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2-sphere metric:
in 3-D embedding space: df? = dz?+dy?+dz? = dr?4r2df?+dz?
but points, intervals constrained to lie on sphere:
R2 = 2 -+ 22 = const
d(R?) = 0 = zdx + ydy + zdz = rdr + zdz
SO dz = —rdr/z — can eliminate z

thus in polar coords with origin at N Pole

2
A2 = dr2—|—r2d92—|—d22=<1—|— i >dr2—|—r2d92 (3)
RQ—TQ
_ R? >, 2.0 dr? 2 10
— <R2—T2>dr —+ r<do _1—7“2/R2+r do (4)

not the Euclidean expression!
© curved space: curvature R2 = const!



Exploring Sphereland

coordinates for (2-D) observers on sphere, centered at N Pole:

dr?

2102 _ p23. 2 2 cin2 2
1—7“2/R2+r df“ = Rdx~ + R“sin“ xdb

d0? = de? + deg =

N Pole inhabitant (2-Santa) measures radial distance from home:
dly = dr/\/l — 1r2/R? = Rdy
— radius is ¢, = Rsin"1(r/R) = Ry

Example: construct a circle

locus of points at same radius /4,

e circumference dC' = dfy = rdf = R sin xdo
— C =27Rsiny < 27wly

e area dA = dl,dly = R?sin x dxdb
— A =271R?(1 —cosy) < wl?

Q. why are these right?
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3-D Life in a 4-D Sphere

generalize to 3-D ‘“surface” of sphere in 4-D space
(“3-sphere’), constant positive curvature R:
3-D spherical coordinates centered on “N pole”

spatial line element

202 — dr?
1 —1r2/R?
e sky still has solid angle dS2 = sin 6dfdr, [d2 = 4n
e radial (proper) distance A¢, = Rsin~1(r/R) = Ry
e SO we have found, for Kk = +1,
RW metric has f(r) = 1/(1 —r2/R?)

+ r2d0? 4+ r2 sin? 0d¢p?

Q. guesses for zero, negative curvature metrics?

(5)
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Friedmann-Lemaitre-Robertson-Walker Metric

Robertson & Walker:
maximal symmetry imposes metric form

Robertson-Walker line element (in my favorite units, coords):

dr?
1— /4:7“2/R2

ds® = dt® — a(t)? ( + r2dh? + r2 sin? 9d¢2>

where cosmic geometry encoded via k:

+1 pos curv: ‘spherical”
K = 0O flat: “Euclidean” (6)
—1 neg curv: “hyperbolic”
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Friedmann-Lemaitre-Robertson-Walker Cosmology

Friedmann & Lemaitre:
solve GR dynamics (Einstein equation)
for stress-energy of “perfect fluid” (no dissipation)

The Einstein Equation and Robertson-Walker

Einstein eq: Ruy — 1/2 Rguy = 8nGT
derivatives in Einstein eq come from curvature tensor R,
— schematically: "R ~ 829 ~ Gp’ — like Newtonian Poisson eq
but the only undetermined function in the metric
IS the scale factor a, which only depends on ¢:
so: Einstein eqs —+ ODEs which set evolution of a(t)
= these are the Friedmann equations!
and: in RW metric, local energy conservation V, T =0
= gives 1st Law: d(pa3) = —pd(a)3

More detail in today’'s Director’'s Cut Extras
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Life in a FRLW Universe

FLRW metric + Friedmann eqgs for a(t)
— all you need to calculate anything
particle motions, fluid evolution, observables...

Excellent first example: Propagation of light

We want to know

e photon path through spacetime

e evolution of photon A, E during propagation
e detected redshift

Q. how to calculate these?
Q. relevant equations?
Q). coordinate choices?
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Worked Example: Photon Propagation

photon path: radial null trajectory ds = 0 (Fermat)
* emitted at Tem, tem
* observed at rops = 0, tops

for FOs at rem and rgps = 0,
any tem and tgyps Pairs have

/tobs dt /
tem Cl/(t) \/1 KTQ/RQ
time-dep time-indep

Since RHS is time-independent Q: why?
then any two pairs of emission/observation events
between comoving points r—0 must have

/tobs,l dt _/tobs,Q dt (7)
t t

em,1 a(t) em,2 a(t)



consider two sequential emission events, lagged by dtem
subsequently seen as sequential observation events with dtgps

time-independence of propagation integral means

tobs dt o tobst0lops dt
/tem @ /tem+5tem @
rearranging...
tem—+dtem dt . tobstotobs dt
fon  a® = a)
if 6t small (Q: compared to what?)
then dtem/a(tem) = dtops/a(tops) and so

5tobs _ a(tobs)
5tem a(tem>
Q. observational implications?

=
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Observational implications:

for any pairs of photons

6lops _ allops) _ 1+ zem
Stem  altem) 14 zops
and since a(tops) > a(tem)
— 5tObS > Otem
— distant happenings appear in slow motion!
— |time dilation!

cosmic time dilation recently observed!
Q. how would effect show up?
Q. wWhy non-trivial to observationally confirm?

WWW: cosmic time dilation evidence
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Director’'s Cut Extras For Relativists
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Perfect fluid:

e “perfect” — no dissipation (i.e., viscosity)

e stress-energy:. given density, pressure fields p,p
and 4-velocity field u,—(1,0,0,0) for FO

T pupuy + p(g;u/ — U,uuz/)

diag(p,p, p,P)FO

Recall: stress-energy conservation is
VVT'MV — O

where V, is covariant derivative
For RW metric, this becomes:

d(a>p) = pd(a?)

1st Law of Thermodynamics!

(8)
(9)

(10)

(11)
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Einstein equation

1

Given RW metric (orthogonal, max symmetric):
e Q. how many nonzero Einstein eqs generally? here?
e Q. what goes into G, 7 what will this be for RW metric?
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Einstein eq:
Guv, Tyy symmetric 4 x4 matrices — 10 independent components
in general, Einstein — 10 equations
but cosmo principle demands: space-time terms Gg; = 0
and off-diagonal space-space G;; =0
else pick out special direction = only diagonal terms nonzero
and all 3 “p" equations same
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Einstein — two independent equations
: 2
a 3k
3 _
(a) +R2a2
8nG'Tog = 8mGp
a a 3K
— 87TGT7;7; — 87TGp

Goo

After rearrangement, these become
the Friedmann “energy’ and acceleration equations!

(13)
(14)
(15)
(16)



