Astro 507 Lecture 14 Feb. 21, 2014

Announcements:

- Problem Set 2 due now
- Preflight 3 posted today, due next Friday 9am

Last time: reconciling $\Omega_0 = 1$ with $\Omega_m \approx 0.3$

Q: strategy? observables?

Q: what's a SN Ia?

Q: why are SNe Ia standard-ish candles? why not? worries?

Strategy: Cosmic Dynamics Reveal Cosmi Contents

Friedmann:

$$H(z)^2 \stackrel{\text{flat}}{=} \frac{8\pi G}{3} \left[\rho_{\text{m},0} (1+z)^3 + \rho_{\text{other}}(z) \right]$$
 (1)

measure $H(z) \rightarrow probe \rho_{other}$ if it exists

observables: standard candle → luminosity distance

$$d_{\mathsf{L}}(z) \stackrel{\text{flat}}{=} (1+z) \int_0^z \frac{dz}{H(z)} \tag{2}$$

measure d_{L} at many z, then:

$$d_{\mathsf{L}}(z + \Delta z) - d_{\mathsf{L}}(z) = (1+z) \int_{z}^{z + \Delta z} \frac{dz}{H(z)} \approx (1+z) \frac{\Delta z}{H(z)} \quad (3)$$

Type Ia Supernovae: "Standardizable" Candles

Type Ia events: best candidates on balance (for now)

- \bullet empirically (low-z) closest to std candles
- ullet typically \sim 1 mag brighter than SN II o can probe higher z
- ...but check for systematics!

```
Type Ia light curves (low-z): E Pluribus Unum light curve L(t) same basic shape—rise, fall
```

- ... but spread in timescale (\sim FWHM) & peak L
- ... but these are tightly *correlated*!
- $\rightarrow L(t)$ spread can be empirically fit with 1 parameter
- \Rightarrow scaled light curves \approx identical! www: light curves
- $_{\omega} \Rightarrow$ "standardized" candles!

Supernova Cosmology Campaigns

Automated searches:

- \triangleright digital sky scans \sim 3–4 weeks apart

WWW: SN images, spectra

The Pioneers

Supernova Cosmology Project | High-z Supernova Search starting with SN 1992bi:

- $\bullet \sim 100 \; \mathrm{SN} \; \mathrm{Ia}$
- 0.15 < z < 1.2

Starting with SN 1995K:

- \sim 50 SNe
- 0.3 < *z* < 1.2
- \star Hubble Space Telescope: fewer but very high-z events Riess et al (2004): 16 SN Ia
 - 0.6 < z < 1.6; highest-z sample Riess et al (2007), GOODS survey with ACS: 13 new SN Ia
 - 0.5 < z < 1.4

Supernova Legacy Survey (2010) analysis of 472 SN Ia

- 123 low z
- 93 SDSS
- 242 SNLS
- 14 HST

Combine low-z + high-z data, then:

- 1. do cosmology
- 2. worry

Luminosity Distance and Acceleration

for a flat universe

$$d_L(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$$

so $d_L(z) \sim \langle (1+z)z/H(z) \rangle$ traces expansion rate history

strategy:

- ullet measure d_L over large z range
- ullet infer evolution/change in $\langle 1/H \rangle$
- Q: What does this give us?
- Q: What are basic trends?

Change in $1/H \rightarrow$ change in H:

⇒ acceleration vs deceleration of scale factor

in fact, can show d_L (and d_A !) sensitive to deceleration parameter

$$q \equiv -\frac{\ddot{a}/a}{(\dot{a}/a)^2} \tag{4}$$

Q: why conventional — sign?

present value: q_0

but in general q can evolve

Acceleration and Luminosity Distance

Can show

$$d_L(z) = (1+z)\frac{c}{H_0} \int_0^z \frac{dz'}{1+z'} e^{-\int_0^z q(u) d \ln(1+u)}$$

- cosmological details only enter via $q = -(\ddot{a}/a)/(\dot{a}/a)^2$
- uses only RW, not Friedmann: result indep of GR!

Compare different "universes" – i.e., models with different q(z)

$$\frac{d_L(z)_{\text{universe 1}}}{d_L(z)_{\text{universe 2}}} = \frac{\int_0^z \frac{dz'}{1+z'} e^{-\int_0^{z'} q(u)_{\text{universe 1}} d \ln(1+u)}}{\int_0^z \frac{dz'}{1+z'} e^{-\int_0^{z'} q(u)_{\text{universe 2}} d \ln(1+u)}}$$

Compare two possible universes

- non-accelerating: q = 0
- decelerating: q > 0

Q: which has bigger d_L at fixed z and fixed H_0 ?

Q: what if positive acceleration? www: d_L plots

SN Ia Survey Predictions

Luminosity distance: $d_L(z) = (1+z)r_{com}(z)$

- $r_{\text{com}} \stackrel{\text{flat}}{=} \int dt/a(t) = \int da/a\dot{a}$: closest in decelerating U $\Rightarrow d_L^{\text{decel}} < d_L^{\text{non-accel}} < d_L^{\text{accel}}$
- candle brightness: $F_{\text{decel}} > F_{\text{non-accel}} > F_{\text{accel}}$

but since gravity is attractive, should slow expansion...

```
b deceleration: q>0 faster H in past \to smaller 1/H \to predict d_L(\text{obs}) < d_L(\text{non} - \text{accel}) \to predict F_{\text{obs}} > F_{\text{non-accel}}: expect std candles brighter than in q=0
```

SN Ia Survey Observations

www: SNIa survey data

Exactly the *opposite* of predictions!

★ standard candles appear faint! in magnitudes, $m_{\text{obs}} > m_{\text{non-accel}}$ flux $F_{\text{obs}} < F_{\text{non-accel}}$ $\star d_L(\text{obs}) > d_L(\text{non-accel})$

Q: possible explanations?

...(at least 3 distinct classes)

Q: pros and cons?

Q: how to observationally test?

Faint SN Ia: Whodunit?

***** Blame the Observations

maybe: SN Ia are *not* reliable standard(izable) candles i.e., $m(\text{obs}) \neq m(\text{std candle})$ such that $L_{\text{SN}}(\text{high}z) < L_{\text{SN}}(\text{low}z)$ systematically

* Blame Einstein

observations correct, but expectations based on gravity theory = GR maybe: GR incorrect/incomplete

***** Blame the Universe

observations correct, and GR correct as well, so infer existence of new cosmic contents which create acceleration e.g., acceleration points to an accelerant! maybe: Friedmann OK, but missing terms i.e., beyond matter (including DM!) and radiation new source(s) of ρ , P

What is to be done?

At face value

- SN Ia \Rightarrow U. is accelerating
- RW+Einstein ⇒ need new cosmic components
 For now: assume these are true; then...

Our Mission

quantify—and ultimately identify—the new stuff see if we can live with the consequences

But don't forget:

- keep checking SN Ia systematics
- don't dismiss gravity beyond Einstein: GR may itself be a limiting case of larger theory just as Newtonian gravity is limit of GR

First step:

Q: Friedmann—what are conditions for acceleration?

Acceleration in a FLRW Universe

Recall:

Cosmo principle (RW metric) + GR

= Friedmann

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2} \right) \tag{5}$$

But SNIa $\rightarrow \ddot{a} > 0$:

$$P < -\frac{1}{3}\rho c^2$$

Q: implications? interpretation?

cosmic acceleration demands $|P < -\rho c^2/3|$

$$P < -\rho c^2/3$$

Cosmic pressure is

- ★ non-negligible
- ★ negative! Q: meaning?
- ★ (for GR experts) violation of strong energy condition $\rho + 3P > 0$ fails!

Exotic substance mandatory!

- NR matter and/or radiation in any form even wierdo particle dark matter (WIMPs, axions, ...) have $P \ge 0$: inadequate!
- new accelerant must be dark i.e., has not been undetected in EM radiation
- simplest solution is oldest...

Acceleration and the Cosmological Constant

Originally: Einstein modification of GR

to allow for *static* universe: $\ddot{a} = \dot{a} = 0$

- forced to introduce new constant of nature
 cosmological constant
- $[\Lambda] = [length^{-2}]$; alters cosmic geometry
- spoils GR → Newtonian limit: instead,

$$\nabla^2 \phi = 4\pi G \rho - \frac{c^2}{3} \Lambda$$

Q: what does this do to Newtonian gravity?

Q: why isn't this immediately fatal?

Cosmo-Sociology: The Checkered History of A

A often invoked to solve cosmo problems, then abandoned when observations improved

example: early measurements gave $H_0 \sim 500 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $\rightarrow t_{\text{H}} \sim 2 \text{ Gyr} \ll \text{age of Earth!}$

Lemaître (1931): A can give "loitering" Universe quasi-static for a long time, then begins expanding recently

"My greatest blunder."

- A. Einstein, allegedly, on inventing Λ

- "The cosmological constant is the last refuge of scoundrels."
 - famous Chicago cosmologist and current Λ enthusiast, circa 1990

Living with \wedge

With $\Lambda \neq 0$, new term in both Friedmann eqs

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{\kappa c^2}{R^2 a^2} + \frac{c^2}{3}\Lambda \tag{6}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2} \right) + \frac{c^2}{3} \Lambda \tag{7}$$

Note appearance & sign in acceleration

 \Rightarrow Λ an "accelerant" \rightarrow "antigravity"

Q: intuitive reason? Hint: original purpose?

convenient to introduce $\Omega_{\Lambda} = \Lambda c^2/3H^2$ allows easy comparison of Λ term with others

Q: but you can guess which larger, based on observed accel?

The Data: A Emerges

SN Ia data in Λ cosmology:

- allow for $\Omega_{\Lambda} = \Lambda c^2/3H^2 \neq 0$
- ullet find best fit to d_L data:

"concordance universe"

www:
$$\Omega_{\Lambda} - \Omega_{m}$$
 plane

$$\Omega_{\Lambda} \simeq 0.7 \qquad \Omega_{\rm m} \simeq 0.3 \tag{8}$$

Q: why is this amazing!