Astro 507 Lecture 15 Feb. 24, 2014

Announcements:

- Preflight 3 due Friday at 9am
- PS1 back at end of class, scores on Compass

Last time: evidence for acceleration

data: SN fainter (lower F) than in coasting, decel. Universe

Q: possible interpretations?

Q: novel property required of any cosmic accelerant?

Q: simplest accelerant?

_ Q: how much accelerant needed?

The Data: A Emerges

SN Ia data in Λ cosmology:

- allow for $\Omega_{\Lambda} = \Lambda c^2/3H^2 \neq 0$
- ullet find best fit to d_L data:

"concordance universe"

www: $\Omega_{\Lambda} - \Omega_{m}$ plane

$$\Omega_{\Lambda} \simeq 0.7 \qquad \Omega_{\rm m} \simeq 0.3 \tag{1}$$

This is amazing!

Q: why?

∧ Looms Large

acceleration demands $\Omega_{\Lambda} \sim 0.7$ roughly independent of CMB

- Einstein-de Sitter expectations of $\Omega_{\rm m}=\Omega_0=1$ totally ruled out!
- $\Omega_{\Lambda} \neq 0$: cosmo constant (or worse!) seems to exist!
- $\Omega_{\Lambda} \gtrsim 2\Omega_{\rm m}$: U dominated by Λ now!
- two mysteries seem related quantitatively:

CMB + cluster: $\Omega_0 - \Omega_m = \Omega_{\text{other}} \approx 0.7$

SNe Ia: $\Omega_{\Lambda} \approx 0.7$

a consistent picture of a bizarre universe!

Q: if this is all true, cosmic fate?

∧ and Cosmic Fate: Big Chill and Dark Sky

if acceleration is truly due to Λ then:

- already dominates Friedmann
- as a increases, matter & curvature terms drop
 - $\rightarrow \Lambda$ dominates even more!

The bleak Λ -dominated future:

- \star future $a(t) \simeq e^{\sqrt{\Omega_{\Lambda}} H_0(t-t_0)} \to \text{exponential expansion for ever!}$ fate is not only big chill but supercooling
- \star event horizon exists: $d_{\rm event,comov}(t_0) \simeq \Omega_{\Lambda}^{-1/2} d_H \sim 6400$ Mpc we will never see beyond this!

worse still: later on.

 $d_{\text{event,comov}}(t_0 + \Delta t) = e^{-\sqrt{\Omega_{\Lambda}}H_0\Delta t}d_{\text{event,comov}}(t_0)$

event horizon shrinks exponentially with time!

 \rightarrow ever less to see!

observational astronomy from data mining only!

∧ as Vacuum Energy

Can rewrite Λ as energy density: ρ_{Λ} : in Friedmann, put

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{\kappa c^{2}}{R^{2}a^{2}} + \frac{\Lambda c^{2}}{3} \equiv \frac{8\pi G}{3}(\rho + \rho_{\Lambda}) - \frac{\kappa c^{2}}{R^{2}a^{2}}$$

so that

$$\rho_{\Lambda} = \frac{\Lambda c^2}{8\pi G}$$
 and $\Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_{\text{crit}}}$

Then introduce pressure P_{Λ} in Fried accel:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) + \frac{\Lambda c^2}{3} \equiv -\frac{4\pi G}{3}(\rho + \rho_{\Lambda} + 3P + 3P_{\Lambda})$$

can show:

$$P_{\Lambda} = -\frac{\Lambda c^2}{8\pi G} = -\rho_{\Lambda}$$

i.e., $P_{\Lambda} = w \rho_{\Lambda}$, with w = -1

 Ω

Note:

- Λ is strict constant $\to \rho_{\Lambda}$ constant in space and time "energy density of the vacuum" \to dark energy
- $P_{\Lambda} < 0$: as needed for acceleration
- \bullet equation of state parameter w=-1 preserves Λ constancy

So: Λ is equivalently a length scale or an energy density Q: what sets its value?

∧ and its Discontents

In Classical GR:

- Λ is a (optional) parameter to be measured
- no a priori insight as to its value (beyond escaping solar system limits)

But quantum mechanics & particle physics offer a new perspective on vacuum energy

Recall: blackbody radiation usually write total energy density:

$$\varepsilon_{\rm bb}(T) = \int \overline{n}\hbar\omega \, \frac{d^3p}{h^3} = \frac{1}{2\pi^2c^2} \int_{\omega=0}^{\infty} \frac{\hbar\omega}{e^{\hbar\omega/kT} - 1} \omega^2 \, d\omega = a_{\rm Boltz}T^4$$

note that $\varepsilon \to 0$ as $T \to 0$: vacuum has no energy ...but (Λ aside) this was always a cheat! Q: why? what omitted? Uncertainty principle → nothing "at rest"

- → ground state "zero point motion"
- \rightarrow zero point modes have energy $E_0 \neq 0$

Blackbody result: treats photon modes as harmonic oscillators but threw away zero point energy $E_0 = \hbar \omega/2!$ Cheated!

- handwaving excuse: E_0 cost of "assembling" oscillators/quanta ...and then only energy differences count
- in practice, usual Planck result is really $\varepsilon_{\text{usual}} = \varepsilon_{\text{tot}}(T) \varepsilon_{T=0} = \varepsilon_{\text{tot}}(T) \varepsilon_{\text{zeropoint}}$
- but in GR: curvature \leftrightarrow mass-energy density absolute energy scales matter! e.g., $(\dot{a}/a)^2 \sim 8\pi G/3 \ \varepsilon/c^2$

Q: what if we keep the zero-point energy?

Try keeping zero point energy:

$$\varepsilon \sim \int_0^\infty \langle E(\omega) \rangle \ \omega^2 \ d\omega$$
 (2)

$$= \int_0^\infty \left(\overline{n} + \frac{1}{2} \right) \hbar \omega \ \omega^2 \ d\omega \tag{3}$$

$$= \int_0^\infty \left(\frac{1}{e^{\hbar\omega/kT} - 1} + \frac{1}{2} \right) \omega^3 \ d\omega \tag{4}$$

$$= \varepsilon_{\text{usual}} + \varepsilon_{\text{zeropoint}} \tag{5}$$

where the zero pont contribution is

$$\varepsilon_{\text{zeropoint}} \sim \int_0^\infty \omega^3 \ d\omega = \infty^4$$

"ultraviolet catastrophe"!

Q: possible cures?

Vacuum Energy in Particle Physics

what is cause of catastrophe?

$$\varepsilon_{\rm zeropoint} \sim \int_0^{\omega_{\rm max}} \omega^3 \ d\omega \sim \omega_{\rm max}^4$$

allowed $\omega_{\text{max}} \rightarrow \infty$

→ included modes of arbitrarily high energy arbitrarily small wavelength

If quanta energy has upper limit $E_{\rm max}$ i.e., a minimum wavelength $\lambda_{\rm min}=\hbar c/E_{\rm max}$ then $\varepsilon_{\rm zeropoint}\neq\infty$

Q: what might such a limit be?

Q: i.e., at what scale might energies "max out"?

The Planck Scale and Λ

Highest known energy scale in physics: Planck Scale when quantum effects become important for gravity

a particle of mass m, energy mc^2 has quantum scale $\lambda_{\rm quantum} = \hbar/mc$ (Compton wavelength) equal to GR scale $\lambda_{\rm GR} = 2Gm/c^2$ (Schwarzchild radius) if $m = M_{\rm Pl}$: the Planck mass

$$M_{\rm Pl}c^2 = \sqrt{\frac{c}{G\hbar}}c^2 \sim 10^{19} \text{ GeV} \tag{6}$$

$$\ell_{\rm Pl} = \frac{\hbar}{M_{\rm Pl}c} \sim 10^{-33} \text{ cm}$$
 (7)

if quanta have $E_{\text{max}} = M_{\text{Pl}}$ and $\lambda_{\text{min}} = \ell_{\text{Pl}}$ then estimate vacuum energy density

$$ho_{
m Vac,Pl} \sim M_{
m Pl}^4 \sim 10^{110} \ {
m erg/cm^3} \sim 10^{89} \ {
m g/cm^3}$$

Q: implications?

Compare to the vacuum density in Λ :

$$ho_{\mathrm{Vac,PI}} \sim 10^{89} \ \mathrm{g/cm^3} \sim 10^{120}
ho_{\mathrm{Lambda}}$$

mismatch is \sim 120 orders of magnitude!!

So the real question is not: "Why have Λ at all?"

but rather: "Why isn't \land gi-normous?"

quantum gravity?

maybe some underlying symmetry set $\Lambda=0$ to avoid "fine-tuning" Λ

if so, then dark energy is not vacuum energy but some other energy density with negative pressure high-energy phase transitions/symmetry breaking? maybe symmetry breaking processes set vacuum energy e.g., GUT, SUSY, electroweak, QCD if so, how does each contribute to total vacuum? run the numbers: best case is QCD

$$\varepsilon_{\rm qcd} \sim \Lambda_{qcd}^4 \sim (100 \text{ MeV})^4 \sim 10^{30} \varepsilon_{\rm dark\,energy}$$
 (8)

many orders of magnitude improvement, but not quite a fix!

Bottom line:

known quantum fields do not provide viable candidate for source of vacuum energy $\rho_{\rm Vac}=\rho_{\Lambda}$

Dark Energy: Parameterized Ignorance

Theoretical Ignorance

No good (i.e., pre-existing) candidates for cosmic acceleration unlike dark matter: high-E theory predicts stable exotic particles

Lacking guidance, look for general way to describe cosmic substance responsible for acceleration: dark energy recall: matter, radiation, Λ described by $P=w\rho c^2$ with w a constant

Write dark energy density and pressure with

$$P_{\mathsf{DE}} = \mathbf{w} \ \rho_{\mathsf{DE}} c^2$$

"parameterize our ignorance" in w (possibly not constant) cosmo constant is limiting case Q: Namely? Q: what can we say about w values?

Dark Energy: the Little We Know

What is w today?

In DE-only case

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) = -\frac{4\pi G}{3}\rho(1 + 3w) \tag{9}$$

 \rightarrow acceleration requires w < -1/3 today

Recall: cosmic first law is

$$d(\rho a^3) = -p \ d(a^3) = -w\rho \ d(a^3) \tag{10}$$

For constant w:

$$\rho_{\mathsf{DE}} \propto a^{-3(1+w)} \tag{11}$$

 \Box Q: sanity check-results for w = matter, radiation, \wedge ?

Q: connection between "w" dark energy and Λ ?

Data: generalize Ω_{Λ} limits to Ω_w and w (now two parameters)

www: current limits

$$\Omega_w \sim 0.7$$
 , $w < -0.76$ (95%CL)

- w close to -1: cosmo constant value!
- ullet tests for w change weak but null
 - → also like cosmo const!

What if w not constant?

Empirical approach: Taylor expand

$$w(a) = w_0 + w_a (1 - a) (12)$$

observations constraint parameters (w_0, w_a)

Q: does this allow for Λ result? if so how?

www: present data