
Astro 507

Lecture 21

March 9, 2014

Announcements:

• Preflight 4 due 9am Friday

Last time: theory of isotropic CMB spectrum

key aspect: Thompson scattering is only process acting

for most photons (i.e., for all photons with hν <∼ 40kT)

Given a photon spectrum Iν prior to decoupling

Q: what is spectrum after Thompson freezeout?

Observed (post-decoupling) CMB spectrum: thermal

Q: implications?

Q: what physically controls onset of decoupling?
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Statistical Mechanics and Cosmology

For much of cosmic time contents of U. in thermal equilibrium

statistical mechanics: at fixed T → matter & radiation n, ρ, P

then cosmic T(a) evolution → n, ρ, P at any epcoh

Boltzmann: consider a particle (elementary or composite)

with a series of energy states:
for two sets of states with energies E1 and E2 > E1

and degeneracies (# states at each E) g1 and g2
ratio of number of particles in these states is

n(E2)

n(E1)
=

g2
g1

e−(E2−E1)/T

where I put k = 1, i.e., kT→T

E

E

g2

g1
1

2
E

Example: atomic hydrogen, at T

Q: ratio of ground (1S) to 1st excited state (2P) populations?
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Atomic hydrogen (H I):

• energy levels: En = −BH/n
2 for n ≥ 1

• angular momenta degeneracies: gℓ = 2ℓ+1

1S: n = 1 → E(1S) = −B; ℓ = 0 → g(1S) = 1

2P : n = 2 → E(2P) = −B/4; ℓ = 1 → g(2P) = 3

n(2P)

n(1S)
= 3e−3B/4T = 3e−120,000K/T (1)

Q: sanity checks–is this physically reasonable?

Q: how does this ratio change if plasma is partially ionized

i.e., contains both H I and H II= H+ = p?

Note: H is bound system → discrete energies

we now broaden analysis to include unbound systems

→ continuous energies, momenta

3



Statistical Mechanics in a Nutshell

classically, phase space (~x, ~p)

completely describes particle state

but quantum mechanics → uncertainty ∆x∆p ≥ h̄/2

semi-classically: min phase space “volume”

(dx dpx)(dy dpy)(dz dpz) = h3 = (2πh̄)3

per quantum state of fixed ~p

define “occupation number” or “distribution function” f(~x, ~p):

number of particles in each phase space “cell”

Q: f range for fermions? bosons?

dN = gf(~x, ~p)
d3~x d3~p

(2πh̄)3
(2)

where g is # internal (spin/helicity) states:

Q: g(e−)? g(γ)? g(p)?
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Fermions: 0 ≤ f ≤ 1 (Pauli)

Bosons: f ≥ 0 g(e−) = 2s(e−) + 1 = 2 electron, same for p

g(γ) = 2 (polarizations) photon

Particle phase space occupation f determines bulk properties

Number density

n(~x) =
d3N

d3x
=

g

(2πh̄)3

∫

d3~p f(~p, ~x) (3)

Mass-energy density

ε(~x) = ρ(~x)c2 = 〈En〉 = g

(2πh̄)3

∫

d3~p E(p) f(~p, ~x) (4)

Pressure see director’s cut extras for more

P(~x) = 〈pivin〉directioni
isotrop
=

〈pvn〉
3

=
g

(2πh̄)3

∫

d3~p
p v(p)

3
f(~p, ~x)

(5)

Q: these expressions are general–simplifications in FLRW?
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FRLW universe:

• homogeneous → no ~x dep

• isotropic → only ~p magnitude important → f(~p) = f(p)

in thermal equilibrium at T :

⊲ Boson occupation number

fb(p) =
1

e(E−µ)/kT − 1
(6)

⊲ Fermion occupation number

ff(p) =
1

e(E−µ)/kT +1
(7)

Note: µ is “chemical potential” or “Fermi energy”

µ = µ(T) but is independent of E

If E − µ ≫ T : both ff ,b −→ fBoltz = e−(E−µ)/kT

→ Boltzmann distribution
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The Meaning of the Chemical Potential

For a particle species in thermal equilibrium

f(p; T, µ) =
1

e[E(p)−µ]/kT ± 1
(8)

What is µ, and what does it mean physically?

First, consider what if µ = 0?

• then f depends only on T and particle mass

and thus so do n, ρ, P Q: why?

• all samples of a substance at fixed T

have exactly the same n, ρ, P !

• and hotter → larger n, ρ, P

sometimes true! Q: examples?

but not always! Q: examples?

Q: what is physics behind µ?
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Chemical Potential & Number Conservation

particle number often conserved

→ n = ncons fixed by initial conditions, not T

if particle number conserved, then µ 6= 0 and µ determined by

solving ncons = n(µ, T) → µ(ncons, T)

so: µ 6= 0 ⇔ particle number conservation
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Chemical Potential and Reactions

reactions change particle numbers among species

in “chemical” equilibrium: forward rate = reverse rate

for example: “two-to-two” reaction a+ b ↔ A+B

conservation laws (charge, baryon number, etc.)

force relations between chemical potentials

so in above example: µa + µb = µA + µB
sum of chemical potentials “conserved”

in general:
∑

initial particlesi

µi =
∑

final particlesf

µf (9)9



Equilibrium Thermodynamics

Gas of mass m particles at temp T :

n, ρ, and P in general complicated

because of E(p) =
√

p2 +m2

but simplify in ultra-rel and non-rel limits

Non-Relativistic Species

E(p) ≃ m+ p2/2m, T ≪ m

for µ ≪ T : Maxwell-Boltzmann, same for Boson, Fermions

for non-relativistic particles = matter

energy density, number density vs T?

Q: recall n(a), ρ(a) and T(a)?
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Non-Relativistic Species

number density

n =
g

(2πh̄)3
e−(mc2−µ)/kT

∫

d3p e−p2/2mkT (10)

= ge−(mc2−µ)/kT
(

mkT

2πh̄2

)3/2

(11)

energy density:

ρc2 = 〈En〉 = εrestmass + εkinetic (12)

= mc2 n+
3

2
kT n (13)

≃ εrestmass = mc2n (14)

pressure

P =
〈pvn〉
3

=

〈

p2n/m
〉

3
=

2

3
εkinetic (15)

= nkT ≪ ρc2 (16)

recover the ideal gas law!
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The Ratio of Baryons to Photons

The number of barons per photon

is the “baryon-to-photon ratio” η ≡ nB/nγ

photons not conserved in general:

e.g., Brehmsstrahlung e → e+ γ
so chem pot µe = µe + µγ → µγ = 0

→ nγ ∼ T3: fixed by T alone

baryons conserved:

#baryons = const in comoving vol

d(nBa3) = 0 → nB ∝ a−3

→ so µB(T) 6= 0 enforces this scaling

Thus we have

η =
nB,0a

−3

nγ,0(T/T0)3
=

(

T0
aT

)3

η0 (17)
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baryon number conservation: nB ∝ a−3

thermal photons: nγ ∝ T3

so as long as T ∼ 1/a then

η = const! baryon-to-photon ratio conserved!

thus we expect ηBBN = ηCMB = η0!

numerically (from BBN, CMB anisot):

η0 ∼ 6× 10−10 ≪ 1 (18)

huge number of photons per baryon! never forget!

but ρB/ργ ∼ mBnB/Tnγ ∼ ηmB/T 6= const
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Recombination: Equilibrium Thermodynamics

dominant cosmic plasma components γ, p, e, H (ignore He, Li)

equilibrium: equal forward and reverse rates for

p+ e ↔ H+ γ

and so chem potentials have

µp + µe = µH (19)

recall: for non-rel species n = g(mT/2πh̄2)3/2e−(m−µ)/T

thus we have Saha equation

nenp

nH
=

gegp

gH

(

memp

mH

)3/2 (
T

2πh̄2

)3/2

e−(me+mp−mH)/T (20)

≈
(

meT

2πh̄2

)3/2

e−B/T (21)

where B ≡ me +mp −mH = 13.6 eV

1
4



introduce “free electron fraction” Xe = ne/nB

use nB = ηnγ ∝ ηT3

from Extras last time: nγ = 2ζ(3)/π2 T 3, with ζ(3) =
∑∞

1 1/n3 = 1.20206 . . .

and note that np = ne Q: why?, so

n2
e

nHnB
=

X2
e

1−Xe
=

√
π

4
√
2ζ(3)

1

η

(

me

T

)3/2
e−B/T (22)

Q: sanity checks? what sets characteristic T scale?

Q: when is Xe = 0 (exactly)?

At last–recombination!

Q: how define physically?

Q: how define operationally, in terms of Xe?

Q: given some Xe,rec, how to get zrec?
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Director’s Cut Extras
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Kinetic Theory of Pressure due to Particle Motions

consider cubic box, sidelength L (doesn’t really need to be cubic)

contain “gas” of N particles: can be massive or massless

particles collide with walls, bounce back elastically

particles exert force on wall ↔ wall on particles

this lead to bulk pressure

focus on one particle, and its component of motion

in one (arbitrary) axis x: speed vx, momentum px
• elastic collision: px,init = −px,fin → δpx = 2px
• collision time interval for same wall: δtx = vx/2L

• single-particle momentum transfer (force) per wall:

Fx = δpx/δtx = pxvx/L

• single-particle force per wall area:

P = Fx/L2 = pxvx/L3 = pxvx/V

Q: total pressure?

1
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total pressure is sum over all particles:

P =
N
∑

particles ℓ=1

p
(ℓ)
x v

(ℓ)
x

V
(23)

can rewrite in terms of an average momentum flux

P =
N

V

∑N
ℓ=1 p

(ℓ)
x v

(ℓ)
x

N
= 〈pxvx〉n (24)

where n = N/V is number density

〈px〉n would be average momentum density along x

and 〈pxvx〉n is average momentum flux along x

if particle gas has isotropic momenta, then

〈pxvx〉 = 〈pyvy〉 = 〈pzvx〉 =
1

3
〈~p · ~v〉 = 1

3
〈pv〉 (25)

so P = 1
3 〈pv〉n
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Ultra-Relativistic Species

E(p) ≃ cp ≫ mc2 (i.e., kT ≫ mc2):

Also take µ = 0 (µ ≪ kT)

energy density, number density?

Q: recall the answers?
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for relativistic bosons

number density

nrel,b =
g

(2πh̄)3

∫

d3p
1

ecp/kT − 1

=
4πg

(2πh̄)3

∫

dp p2
1

ecp/kT − 1
=

g

2π2

(

kT

h̄c

)3 ∫ ∞

0
du u2

1

eu − 1

= g
ζ(3)

π2

(

kT

h̄c

)3

∝ T3

where

ζ(3) =
∞
∑

n=1

1

n3
= 1+

1

23
+

1

33
+ · · · = 1.20206 . . . (26)
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relativistic fermions:

nrel,f =
3

4
nrel,b (27)

so n ∝ T3 for both

e.g., CMB today: nγ,0 = 411 cm−3

energy density: relativistic bosons

ρrel,bc
2 =

g

(2πh̄)3

∫

d3p cp
1

ecp/kT − 1

=
g

2π2

(kT)4

(h̄c)3

∫ ∞

0
du u3

1

eu − 1

= g
π2

30

(kT)4

(h̄c)3

and for fermions

ρrel,f =
7

8
ρrel,b (28)
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so ρ ∝ T4 for both

pressure

Prel =

〈

pv

3
n

〉

=
1

3
ρrelc

2 (29)

since v = c

P ∝ T4



Temperature Evolution

If in therm eq, maintain photon occ. #

f(p) =
1

ep/T − 1
(30)

but cp = hν = hc/λ ∝ 1/a(t):

⇒ p = p0/a

w/o interactions, const # γ per mode p

⇒ f(p) = const

⇒ p(t)/T(t) = p0/T0
⇒ T/T0 = p/p0 = 1/a = 1+ z

e.g., at z = 3, CMB T = 4T0 ≃ 11 K

(measured in QSO absorption line system!)

recall: used w = 1/3 to show ργ ∝ a−4

but blackbody ργ ∝ T4

together T ∝ 1/a (OK!)
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