Astro 507 Lecture 21 March 9, 2014

Announcements:

 \vdash

Preflight 4 due 9am Friday

Last time: theory of isotropic CMB spectrum key aspect: Thompson scattering is *only* process acting for most photons (i.e., for all photons with $h\nu \lesssim 40kT$) Given a photon spectrum I_{ν} prior to decoupling Q: what is spectrum after Thompson freezeout? Observed (post-decoupling) CMB spectrum: thermal Q: implications?

Q: what physically controls onset of decoupling?

Statistical Mechanics and Cosmology

For much of cosmic time contents of U. in thermal equilibrium

statistical mechanics: at fixed $T \to \text{matter } \& \text{ radiation } n, \rho, P$ then cosmic T(a) evolution $\to n, \rho, P$ at any epcoh

Boltzmann: consider a particle (elementary or composite) with a series of energy states:

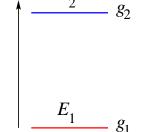
for two sets of states with energies E_1 and $E_2 > E_1$ and degeneracies (# states at each E) g_1 and g_2 ratio of number of particles in these states is

$$\frac{n(E_2)}{n(E_1)} = \frac{g_2}{g_1} e^{-(E_2 - E_1)/T}$$

where I put k = 1, i.e., $kT \rightarrow T$

Example: atomic hydrogen, at T

Q: ratio of ground (1S) to 1st excited state (2P) populations?



Atomic hydrogen (H I):

- energy levels: $E_n = -B_H/n^2$ for $n \ge 1$
- angular momenta degeneracies: $g_{\ell} = 2\ell + 1$

1S:
$$n = 1 \to E(1S) = -B$$
; $\ell = 0 \to g(1S) = 1$
2P: $n = 2 \to E(2P) = -B/4$; $\ell = 1 \to g(2P) = 3$

$$\frac{n(2P)}{n(1S)} = 3e^{-3B/4T} = 3e^{-120,000 \text{ K/T}}$$
(1)

Q: sanity checks—is this physically reasonable?

Q: how does this ratio change if plasma is partially ionized i.e., contains both H I and H II= $H^+ = p$?

Note: H is bound system \rightarrow discrete energies we now broaden analysis to include unbound systems \rightarrow continuous energies, momenta

Statistical Mechanics in a Nutshell

```
classically, phase space (\vec{x}, \vec{p}) completely describes particle state but quantum mechanics \rightarrow uncertainty \Delta x \Delta p \geq \hbar/2 semi-classically: min phase space "volume" (dx \ dp_x)(dy \ dp_y)(dz \ dp_z) = h^3 = (2\pi\hbar)^3 per quantum state of fixed \vec{p}
```

define "occupation number" or "distribution function" $f(\vec{x}, \vec{p})$: number of particles in each phase space "cell" Q: f range for fermions? bosons?

$$dN = gf(\vec{x}, \vec{p}) \frac{d^3\vec{x} \ d^3\vec{p}}{(2\pi\hbar)^3}$$
 (2)

where g is # internal (spin/helicity) states: $Q: g(e^-)? g(\gamma)? g(p)?$

Fermions: $0 \le f \le 1$ (Pauli)

Bosons: $f \ge 0$ $g(e^-) = 2s(e^-) + 1 = 2$ electron, same for p

 $g(\gamma) = 2$ (polarizations) photon

Particle phase space occupation f determines bulk properties

Number density

$$n(\vec{x}) = \frac{d^3N}{d^3x} = \frac{g}{(2\pi\hbar)^3} \int d^3\vec{p} \ f(\vec{p}, \vec{x})$$
 (3)

Mass-energy density

$$\varepsilon(\vec{x}) = \rho(\vec{x})c^2 = \langle En \rangle = \frac{g}{(2\pi\hbar)^3} \int d^3\vec{p} \ E(p) \ f(\vec{p}, \vec{x}) \tag{4}$$

Pressure see director's cut extras for more

$$P(\vec{x}) = \langle p_i v_i n \rangle_{\text{direction}i} \stackrel{\text{isotrop}}{=} \frac{\langle p v n \rangle}{3} = \frac{g}{(2\pi\hbar)^3} \int d^3 \vec{p} \, \frac{p \, v(p)}{3} \, f(\vec{p}, \vec{x})$$
(5)

Q: these expressions are general-simplifications in FLRW?

 \mathcal{O}

FRLW universe:

- ullet homogeneous ightarrow no $ec{x}$ dep
- isotropic \rightarrow only \vec{p} magnitude important $\rightarrow f(\vec{p}) = f(p)$

in **thermal equilibrium** at T:

Boson occupation number

$$f_{b}(p) = \frac{1}{e^{(E-\mu)/kT} - 1}$$
 (6)

Fermion occupation number

$$f_{f}(p) = \frac{1}{e^{(E-\mu)/kT} + 1}$$
 (7)

Note: μ is "chemical potential" or "Fermi energy" $\mu = \mu(T)$ but is independent of E

If $E - \mu \gg T$: both $f_{\mathsf{f},\mathsf{b}} \longrightarrow f_{\mathsf{Boltz}} = e^{-(E - \mu)/kT}$ $\to Boltzmann\ distribution$

The Meaning of the Chemical Potential

For a particle species in thermal equilibrium

$$f(p; T, \mu) = \frac{1}{e^{[E(p) - \mu]/kT} \pm 1}$$
 (8)

What is μ , and what does it mean physically?

First, consider what if $\mu = 0$?

- then f depends only on T and particle mass and thus so do n, ρ, P Q: why?
- all samples of a substance at fixed T have exactly the same $n, \rho, P!$
- and hotter \rightarrow larger n, ρ, P

sometimes true! Q: examples? but not always! Q: examples?

Q: what is physics behind μ ?

Chemical Potential & Number Conservation

particle number often *conserved*

 $\rightarrow n = n_{\text{cons}}$ fixed by initial conditions, not T

if particle number conserved, then $\mu \neq 0$ and μ determined by solving $n_{\text{cons}} = n(\mu, T) \rightarrow \mu(n_{\text{cons}}, T)$

so: $\mu \neq 0 \Leftrightarrow$ particle number conservation

Chemical Potential and Reactions

reactions change particle numbers among species

in "chemical" equilibrium: forward rate = reverse rate for example: "two-to-two" reaction $a + b \leftrightarrow A + B$

conservation laws (charge, baryon number, etc.) force relations between chemical potentials so in above example: $\mu_a + \mu_b = \mu_A + \mu_B$ sum of chemical potentials "conserved"

in general:

$$\sum_{\text{initial particles}i} \mu_i = \sum_{\text{final particles}f} \mu_f \tag{9}$$

Equilibrium Thermodynamics

Gas of mass m particles at temp T: $n,\ \rho,\ {\rm and}\ P$ in general complicated because of $E(p)=\sqrt{p^2+m^2}$ but simplify in ultra-rel and non-rel limits

Non-Relativistic Species

$$E(p) \simeq m + p^2/2m, \ T \ll m$$
 for $\mu \ll T$: Maxwell-Boltzmann, same for Boson, Fermions

for non-relativistic particles = matter energy density, number density vs T? Q: recall $n(a), \rho(a)$ and T(a)?

Non-Relativistic Species

number density

$$n = \frac{g}{(2\pi\hbar)^3} e^{-(mc^2 - \mu)/kT} \int d^3p \ e^{-p^2/2mkT}$$
 (10)

$$= ge^{-(mc^2 - \mu)/kT} \left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2}$$
 (11)

energy density:

$$\rho c^2 = \langle En \rangle = \varepsilon_{\text{rest mass}} + \varepsilon_{\text{kinetic}} \tag{12}$$

$$\rho c^{2} = \langle En \rangle = \varepsilon_{\text{rest mass}} + \varepsilon_{\text{kinetic}}$$

$$= mc^{2} n + \frac{3}{2} kT n$$
(12)

$$\simeq \varepsilon_{\text{rest mass}} = mc^2 n$$
 (14)

pressure

$$P = \frac{\langle pvn \rangle}{3} = \frac{\langle p^2n/m \rangle}{3} = \frac{2}{3} \varepsilon_{\text{kinetic}}$$
 (15)

$$= nkT \ll \rho c^2 \tag{16}$$

recover the ideal gas law!

The Ratio of Baryons to Photons

The number of barons per photon is the "baryon-to-photon ratio" $\eta \equiv n_B/n_\gamma$

photons not conserved in general:

e.g., Brehmsstrahlung
$$e \rightarrow e + \gamma$$
 so chem pot $\mu_e = \mu_e + \mu_\gamma \rightarrow \mu_\gamma = 0$ $\rightarrow n_\gamma \sim T^3$: fixed by T alone

baryons conserved:

#baryons = const in comoving vol
$$d(n_B a^3) = 0 \rightarrow n_B \propto a^{-3}$$

 \rightarrow so $\mu_B(T) \neq 0$ enforces this scaling

Thus we have

$$\eta = \frac{n_{B,0}a^{-3}}{n_{\gamma,0}(T/T_0)^3} = \left(\frac{T_0}{aT}\right)^3 \eta_0 \tag{17}$$

baryon number conservation: $n_{\rm B} \propto a^{-3}$ thermal photons: $n_{\gamma} \propto T^3$

so as long as $T \sim 1/a$ then $\eta = const!$ baryon-to-photon ratio conserved! thus we expect $\eta_{\rm BBN} = \eta_{\rm CMB} = \eta_0!$

numerically (from BBN, CMB anisot):

$$\eta_0 \sim 6 \times 10^{-10} \ll 1$$
 (18)

huge number of photons per baryon! never forget!

but $\rho_B/\rho_\gamma \sim m_B n_B/T n_\gamma \sim \eta m_B/T \neq const$

Recombination: Equilibrium Thermodynamics

dominant cosmic plasma components γ, p, e , H (ignore He, Li) equilibrium: equal forward and reverse rates for

$$p + e \leftrightarrow H + \gamma$$

and so chem potentials have

$$\mu_p + \mu_e = \mu_{\mathsf{H}} \tag{19}$$

recall: for non-rel species $n=g(mT/2\pi\hbar^2)^{3/2}e^{-(m-\mu)/T}$ thus we have **Saha equation**

$$\frac{n_e n_p}{n_{\text{H}}} = \frac{g_e g_p}{g_{\text{H}}} \left(\frac{m_e m_p}{m_{\text{H}}}\right)^{3/2} \left(\frac{T}{2\pi\hbar^2}\right)^{3/2} e^{-(m_e + m_p - m_{\text{H}})/T} \tag{20}$$

$$\approx \left(\frac{m_e T}{2\pi\hbar^2}\right)^{3/2} e^{-B/T} \tag{21}$$

where $B \equiv m_e + m_p - m_H = 13.6 \text{ eV}$

introduce "free electron fraction" $X_e = n_e/n_B$ use $n_B = \eta n_\gamma \propto \eta T^3$

from Extras last time: $n_{\gamma} = 2\zeta(3)/\pi^2 T^3$, with $\zeta(3) = \sum_{1}^{\infty} 1/n^3 = 1.20206...$

and note that $n_p = n_e \ Q$: why?, so

$$\frac{n_e^2}{n_H n_B} = \frac{X_e^2}{1 - X_e} = \frac{\sqrt{\pi}}{4\sqrt{2}\zeta(3)} \frac{1}{\eta} \left(\frac{m_e}{T}\right)^{3/2} e^{-B/T}$$
(22)

Q: sanity checks? what sets characteristic T scale?

Q: when is $X_e = 0$ (exactly)?

At last-recombination!

Q: how define physically?

Q: how define operationally, in terms of X_e ?

Q: given some $X_{e,rec}$, how to get z_{rec} ?

Director's Cut Extras

Kinetic Theory of Pressure due to Particle Motions

consider cubic box, sidelength L (doesn't really need to be cubic) contain "gas" of N particles: can be massive or massless particles collide with walls, bounce back elastically particles exert force on wall \leftrightarrow wall on particles this lead to bulk *pressure*

focus on one particle, and its component of motion in one (arbitrary) axis x: speed v_x , momentum p_x

- elastic collision: $p_{x,init} = -p_{x,fin} \rightarrow \delta p_x = 2p_x$
- ullet collision time interval for same wall: $\delta t_x = v_x/2L$
- single-particle momentum transfer (force) per wall: $F_x = \delta p_x/\delta t_x = p_x v_x/L$
- single-particle force per wall area: $P = F_x/L^2 = p_x v_x/L^3 = p_x v_x/V$

Q: total pressure?

total pressure is sum over all particles:

$$P = \sum_{\text{particles } \ell=1}^{N} \frac{p_x^{(\ell)} v_x^{(\ell)}}{V}$$
 (23)

can rewrite in terms of an average momentum flux

$$P = \frac{N}{V} \frac{\sum_{\ell=1}^{N} p_x^{(\ell)} v_x^{(\ell)}}{N} = \langle p_x v_x \rangle n$$
 (24)

where n=N/V is number density $\langle p_x \rangle \, n$ would be average momentum density along x and $\langle p_x v_x \rangle \, n$ is average momentum flux along x

if particle gas has isotropic momenta, then

$$\langle p_x v_x \rangle = \langle p_y v_y \rangle = \langle p_z v_x \rangle = \frac{1}{3} \langle \vec{p} \cdot \vec{v} \rangle = \frac{1}{3} \langle pv \rangle$$
 (25)

so
$$P = \frac{1}{3} \langle pv \rangle n$$

Ultra-Relativistic Species

$$E(p) \simeq cp \gg mc^2$$
 (i.e., $kT \gg mc^2$):
Also take $\mu = 0$ ($\mu \ll kT$)

energy density, number density?

Q: recall the answers?

for relativistic bosons number density

$$n_{\text{rel,b}} = \frac{g}{(2\pi\hbar)^3} \int d^3p \, \frac{1}{e^{cp/kT} - 1}$$

$$= \frac{4\pi g}{(2\pi\hbar)^3} \int dp \, p^2 \, \frac{1}{e^{cp/kT} - 1} = \frac{g}{2\pi^2} \, \left(\frac{kT}{\hbar c}\right)^3 \, \int_0^\infty du \, u^2 \, \frac{1}{e^u - 1}$$

$$= g \frac{\zeta(3)}{\pi^2} \, \left(\frac{kT}{\hbar c}\right)^3 \propto T^3$$

where

$$\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots = 1.20206\dots$$
 (26)

relativistic fermions:

$$n_{\text{rel,f}} = \frac{3}{4} n_{\text{rel,b}} \tag{27}$$

so $n \propto T^3$ for both e.g., CMB today: $n_{\gamma,0} = 411 \ {\rm cm}^{-3}$

energy density: relativistic bosons

$$\rho_{\text{rel,b}}c^{2} = \frac{g}{(2\pi\hbar)^{3}} \int d^{3}p \ cp \ \frac{1}{e^{cp/kT} - 1}$$

$$= \frac{g}{2\pi^{2}} \frac{(kT)^{4}}{(\hbar c)^{3}} \int_{0}^{\infty} du \ u^{3} \frac{1}{e^{u} - 1}$$

$$= g \frac{\pi^{2}}{30} \frac{(kT)^{4}}{(\hbar c)^{3}}$$

and for fermions

$$\rho_{\text{rel,f}} = \frac{7}{8} \rho_{\text{rel,b}} \tag{28}$$

so $\rho \propto T^4$ for both

pressure

$$P_{\text{rel}} = \left\langle \frac{pv}{3} n \right\rangle = \frac{1}{3} \rho_{\text{rel}} c^2 \tag{29}$$

since v = c $P \propto T^4$

Temperature Evolution

If in therm eq, maintain photon occ. #

$$f(p) = \frac{1}{e^{p/T} - 1} \tag{30}$$

but
$$cp = h\nu = hc/\lambda \propto 1/a(t)$$
:
 $\Rightarrow p = p_0/a$

w/o interactions, const # γ per mode p

$$\Rightarrow f(p) = const$$

$$\Rightarrow p(t)/T(t) = p_0/T_0$$

$$\Rightarrow T/T_0 = p/p_0 = 1/a = 1 + z$$

e.g., at
$$z = 3$$
, CMB $T = 4T_0 \simeq 11$ K (measured in QSO absorption line system!)

recall: used w=1/3 to show $\rho_{\gamma} \propto a^{-4}$ but blackbody $\rho_{\gamma} \propto T^4$ together $T \propto 1/a$ (OK!)