
Astro 507

Lecture 32

April 14, 2014

Announcements:

• Preflight 6 (last one!) due Friday 9am

• yet another awesome cosmology bigshot talk tomorrow:

Astronomy Colloquium, 4pm Tuesday April 14

Nick Gnedin, Fermilab and U. Chicago

“Simulating Reionization: Yesterday, Today, Tomorrow”

Last time: inflation perturbed

Q: quantum mechanics of inflaton field φ?

Q: “confinement” region for φ?

Q: mean value of 〈φ〉? 〈δφ〉?

Q: what is fate of fluctuation born at

comoving scale λcom?

Q: inflation perturbations vs Hawking radiation?
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Inflation and Quantum Fluctuations

decompose φ(~x, t) = φcl(t) + δφ(~x, t)
with 〈φ〉 = φcl and 〈δφ〉 = 0

but quantun fluctuations have
〈
(δφ)2

〉
6= 0

causal physics operates on scales inside

the (comoving) Hubble length dH,com = 1/aH

so inflaton field effectively “confined” to δxcom ∼ dH,com
→ expect quantum energy fluctuation ∆E ∼ c∆p ∼ h̄/dH ∼ h̄H

quantum mechanics generates inflaton perturbations

• in static universe, these average to zero

• but during inflation, H ≈ const and a ≈ eHt

• when fluctuation of scale λcom = 1/kcom > dH,com
“leaves horizon” and becomes “frozen in” as real perturbation

• comoving Hubble length dH,com ∝ e−Ht shrinks
ever smaller scales leave horizon
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Evolution of Quantum Perturbations

Write spatial fluctuations in inflaton field

as sum (integral) of Fourier modes:

δφ(t, ~x) =
∑

~k

δφ~k(t)e
i~k·~xcom (1)

where k = kcom = 2π/λcom is comoving wavenumber

classical part of δφ~k inflated away

but quantum part crucial, persists during inflation
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in Director’s Cut notes:

• inflaton field begins in vacuum state

• evolves as a quantum harmonic oscillator

→ dominated by vacuum=ground state

Q: wavefunction of ground state harmonic oscillator?

Q: probability of finding particle at x?

Q: implications for inflaton fluctuations?
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Inflation Spectrum
Statistical Properties

⋆ Recall: inflaton quantum modes ↔ harmonic oscillator

dominated by vacuum ↔ ground state ‖ψsho(x)‖
2 ∼ e−x

2/2∆x2

φk ↔ x fluctuations are statistically Gaussian

i.e., perturbations of all sizes occur, but

probability of finding perturbation of size δ(R)

on scale R is distributed as a Gaussian

⋆ inflaton perturbations → reheating

→ radiation, matter perturbations

same levels in both: “adiabatic”

⋆⋆⋆⋆⋆ All of these are bona fide predictions of inflation

and are testable! Q: how?
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Slow Roll and Scale Dependence

Last time, and in Extras today:

dimensionless fluctuation amplitude (variance)

at comoving wavenumber k = kcom

∆2(k) ∼

(
δρ

ρ

)

k

∼


H

2

m2
pl



(
H

φ̇

)2

aH=k

∼


 V

ǫm4
pl



aH=k

(2)

evaluated at “horizon crossing” aH = k

Q: how does aH change during inflation?

Q: for slow roll, how does ∆2(k) change with scale?
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Inflation Spectrum
Slightly Tilted Scale Invariance

recall: perturbation leaving horizon have very similar amplitude

during inflation → nearly same for all lengthscales ↔ k

perturbation rms amplitude

δ2inf(k) ∝ k−6ǫ+2η (3)

⋆ successful inflation ⇔ slow roll ⇔ ǫ, η ≪ 1 demands

perturbation spectrum nearly independent of scale

nearly “self-similar,” without characteristic scale

“Peebles-Harrison-Zel’dovich” spectrum

⋆ successful inflation must end → ǫ, η 6= 0

demands small departures from scale-invariance

“tilted spectrum”
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Gravity Waves: Tensor Perturbations

⋆ so far: only looked at density (scalar) perturbations

but also tensor perturbations → gravity waves!

what’s really going on: cosmic metric is perturbed

spatial part (in a particular coordinate system = gauge):

• unperturbed = FLRW

dℓ2|FLRW = a(t)2 (dx2 + dy2 + dz2) = a(t)2 δij dxi dxj (4)

with perturbations

dℓ2|pert = a(t)2 e2ζ γij dxi dxj (5)

with curvature perturbation the scalar function ζ(~x, t)

Q: what it its physical effect?
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perturbed metric

dℓ2|pert = a(t)2 e2ζ γij dxi dxj (6)

curvature perturbation scalar function ζ(~x, t) changes local vol-

ume

→ locally: isotropic stretching

tensor perturbation is, to lowest order

γij ≈




1+ h+ h× 0
−h× 1− h+ 0
0 0 1


 = δij +




h+ h× 0
−h× −h+ 0
0 0 0


 (7)

with two independent modes of amplitude h+, h×
Q: physical effect of these modes?
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tensor perturbation is, to lowest order

γij ≈ δij +




h+ h× 0
−h× −h+ 0
0 0 0


 (8)

looks like rotation: roughly speaking preserves volume

but changes angles

moreoever: h satisfies massless wave equation!

h ⇔ gravitational radiation

effect on a ring of test particles:

..

h

h

+

x

gravity wave incident through page

time

1
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Metric Flucuations

tensor perturbations directly are metric perturbation

what about the inflaton perturbations?

curvature perturbation in an invariant (coordinate independent):

ζ = Φ+Hδt = Φ+H
δφ

φ̇
(9)

Φ(~x, t) is local gravitational potential perturbation

inflation fluctuations φ also are metric perturbations

but amplitude differs from gravity wave amplitude

by factor H/φ̇

and thus scalar perturbation variance differs by factor

r =
∆2
h

∆2
Φ

∼

(
φ̇

H

)2
∼ ǫ (10)

1
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Inflationary Tensor Perturbations

variance as a function of scale (wavenumber)

∆2
h(k) ∼


 V

m4
pl



aH=k

(11)

• evaluated at “horizon crossing” aH = k

• directly probes inflation potential V (φ)!

• compare to density (“scalar”) perturbations:

tensor-to-scalar ratio

r =
∆2
h

∆2
Φ

= 16ǫ (12)

• for ǫ≪ 1, expect r ≪ 1: scalar dominates

1
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Testing Inflation: Status to Date

test by measuring density fluctuations

and their statistical properties

on various scales at various epochs

CMB at large angles (large scales, decoupling)

• nearly scale invariant! woo hoo! (COBE 93)

• Gaussian distribution (COBE, WMAP)

www: 3-yr WMAP T distribution

or nearly so...see Yadav & Wandelt (2007)

• WMAP, Planck: evidence for tilt! favors large scales (“red”)!

Planck (2013): α = −0.0397± 0.0073 nonzero at ∼ 5σ!

These did not have to be true!

Not guaranteed to be due to inflation

but very encouraging nonetheless

1
3

http://lambda.gsfc.nasa.gov/product/map/current/pub_papers/threeyear/parameters/images/Large/ds_f22_PPT_L.png
http://arxiv.org/abs/0712.1148


Inflation Scorecard

Summary:

Inflation designed to solve horizon, flatness, smoothness

does this, via accelerated expansion driven by inflaton

But unexpected bonus: structure

inflaton field has quantum fluctuations

imprinted before horizon crossing

later return as density fluctuations

→ inflationary seeds of cosmic structure?!

Thus far: observed cosmic density fields

have spectrum, statistics as predicted by inflation

As of March 17, 2014: gravity wave background too (?!)

probed by CMB polarization!

all eyes on other polarization experiments!

1
4



Director’s Cut Extras

1
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Fluctuation Spectrum: In More Detail

Starting point of more rigorous treatment

in equation of motion

φ̈+3Hφ̇−∇2φ+ V ′(φ) = 0 (13)

write field as sum

φ = φclassical(t) + δφ(t, ~x) (14)

• classical amplitude φcl(t)

spatially homogeneous: smooth, classical, background field

evolves according to classical equation of motion

→ this has been our focus thus far; now add

• quantum fluctuations δφ(t, ~x)

these can vary across space and with time

1
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decompose spatial part of fluctuations into plane waves

δφ(t, ~x) =
∑

~k

δφ~k(t)e
i~k·~xcom (15)

convenient to label Fourier modes by

comoving wavelength λ ≡ λcom, wavenumber k ≡ kcom = 2π/λcom

but physical wavelength λphys = aλcom, wavenumber kphys = k/a

as long as quantum perturbations δφ small (linear evolution)

each wavelength–i.e., scale–evolves independently

→ main reason to use Fourier modes

classically δφ = (δφ)2 = 0 by definition!

Q: what is physical significance of quantum excitations in φ?1
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The Quantum Inflaton Field

quantum mechanically:

• true φ has fluctuations around background value

• each ~k mode ↔ independent quantum states (oscillators)

• mode fluctuations quantized → quanta are inflaton particles

analogous to photons as EM quanta

• occupation numbers: n~k > 0 → real particles present

• if n~k = 0 → 〈δφ〉 = 0 no particles (vacuum/ground state)

but zero-point fluctuations still present
〈
δφ2

〉
6= 0

1
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Fluctuation Lagrangian

expand each ~k mode around classical value

L~k =
1

2
δ̇φ

2
~k
−

1

2

k2

a2
δφ2~k

−
1

2
V ′′(φcl)δφ

2
~k
− V (φcl) (16)

≈
1

2
δ̇φ

2
~k
−

1

2

k2

a2
δφ2~k

(17)

where slow roll → potential terms small

→ a massless simple harmonic oscillator

δφ vacuum state: zero point fluctuations

formally same a quantum harmonic oscillator!

for each k mode, fluctuation amplitudes random

but probability distribution is like n = 0 oscillator

P(δφ~k) ∝ e
−δφ2~k

/2σ2~k (18)

where variance σ2~k
=
〈
δφ2~k

〉

→ vacuum fluctuation amplitudes have gaussian distribution

1
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Total φ energy density is ρφ = ρbackground + ρzeropoint + ρparticles
pre-inflation: could have ρparticles 6= 0

in fact: if thermalized, ρparticles ∝ T4 (radiation)

→ inflation only begins when ρbackground ≫ ρparticles
Q: what happens to inflatons after inflation begins?

2
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after inflation begins, universe rapidly expanded, cooled

inflatons diluted away

→ inflation field driven to vacuum (ground) state

Since φ in quantum vacuum state: fluctuations are zero-point

→ gaussian distribution of amplitudes in each k mode

→ strong prediction of slow-roll inflation

now want to solve for size of rms σk at each mode

classically, perturbations have equation of motion

d2

dt2
δφ+3H

d

dt
δφ+

k2

a2
δφ+ V ′′δφ = 0 (19)

d2

dt2
δφ+3H

d

dt
δφ+

k2

a2
δφ ≈ 0 (20)

(in slow roll: V ′′ term negligible)

2
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Sketch of Quantum Treatment

Promote δφ → operator δ̂φ
plane wave expansion: δ̂φ =

∑
~k
δ̂φ~k

introduce annihilation, creation operators â~k, â
†

−~k
, then

δ̂φ~k = wk(t) â~k + w∗
k(t) â

†

−~k
(21)

where wk(t) is a solution of field equation

ẅk +3Hẇk +

(
k

a

)2
wk = 0 (22)

Compare limits:

• k/a≫ H → k ≫ aH → λ ≪ 2πdH,com
Q: physical interpretation of limit?

wk evolves as harmonic oscillator (free massless field)

• k/a≪ H → k ≪ aH → λ ≫ 2πdH,com
Q: physical interpretation of limit?

ẇk ∝ a−3→ 0 → wk value “frozen”

2
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Inflation Perturbations: Evolution and Horizons

sub-horizon scales λ≪ 2πdH,com
inflaton fluctuations δφ are causally connected

evolve like harmonic oscillator → rms amplitude
〈
|wk|

2
〉
constant

but cosmic acceleration during inflation → dH,com shrinks

since ḋH,com = d(aH)−1/dt = d(ȧ−1)/dt = −ä/ȧ2 < 0 during inf

dH,com shrinkage: initially sub-horizon scales → super-horizon

super-horizon scales λ≫ 2πdH,com
fluctuations out of causal contact

amplitude “frozen in” until post-inflation dH,com regrows

2
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Inflation Perturbations: Spectrum of Amplitudes

examine fluctuations from vacuum

→ find expected amplitudes wk

since fluctuations have quantum origin

• cannot predict definite values for mode amplitudes, phases

• but can predict statistical properties

for different modes ~k and ~k′,

Q: what do we expect?

2
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for different modes ~k and ~k′,

expectation is

〈δ̂φ~kδ̂φ~k′〉 = wkwk′
〈
â~kâ

†
~k′

〉
+ c.c. = 0 (23)

because
〈
â~kâ

†
~k′

〉
=
〈
â~k

〉 〈
â
†
~k′

〉
= 0

⇒ modes are statistically independent

note: true even if |~k| = |~k′| = k but ~k · ~k′ = 0

i.e., different directions ~k = kx̂,~k′ = kŷ

⇒ phase ei
~k·~x is random

for a single mode k, vacuum expectation is

〈δ̂φ
2
~k〉 = |wk|

2
〈
ââ† + â†â

〉
= |wk|

2 6= 0 (24)

=
H2

2L3k3
(25)

where last expression

• from full quantum calculation, in box of size L

• to be evaluated at horizon crossing: kphys = H → k = aH

2
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each in phase space volume

d3xd3k =
1

(2πL)3
4πk2dk =

4πk3

(2πL)3
dk

k
(26)

then fluctuation amplitude is

Pφ(k)
dk

k
≡

4πk3

(2πL)3
|δφk|

2dk

k
=

(
H

2π

)2 dk
k

(27)

and so the phase space fluctuation density in φ is

Pφ(k) =

(
H

2π

)2

k=aH
(28)

as before, but now

• explicitly seen independence of k

• know when to evaluate: at horizon crossing k = aH

2
6



Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale λ = 2π/k key idea: causal

physics acts until λ > dH,com: “horizon crossing”

→ quantum fluctuations laid down while inside dH,com
“frozen in” once outside of dH,com

from last time: quantum analysis gives fluctuation variance

〈
(δφk)

2
〉
=

(
H

2π

)2

k=aH
(29)

to be evaluated at horizon crossing: k = 1/dH,com = aH

2
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Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale λ = 2π/k key idea: causal

physics acts until λ > dH,com: “horizon crossing”

→ quantum fluctuations laid down while inside dH,com
“frozen in” once outside of dH,com

from last time: quantum analysis gives fluctuation variance

〈
(δφk)

2
〉
=

(
H

2π

)2

k=aH
(30)

to be evaluated at horizon crossing: k = 1/dH,com = aH

2
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Inflationary Density Perturbations: Spectrum

Recall: density fluctuations → start inflating earlier (later)

→ more (less) expansion than average

extra scale factor boost δa/a = Hδt = Hδφ/φ̇ → larger volume

→ density perturbations have mean square

δ2inf(k) ≡

(
δρ

ρ

)2

k

(31)

∼

(
δa

a

)2
=

(
H

φ̇

)2
(δφ)2 =

(
H

φ̇

)2 (
H

2π

)2
(32)

evaluated at aH = k

slow roll: H, φ̇ slowly varying

→ expect fluctuation amplitude ∼ H4/φ̇2 ∼ const

over wide range of k
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In particular: slow roll φ̇ = −3V ′/H,

and H2 = V/3m2
pl, which gives

δ2inf(k) =
1

12π2m6
pl

(
V 3

V ′2

)
=

1

24π2m4
pl

(
V

ǫ

)
(33)

where ǫ = mpl(V
′/V )2/2

anticipating ∼ power law behavior,

define δ2inf(k) ∼ kα(k)

then scale dependence is

α(k) =
d ln δ2inf(k)

d ln k
(34)

evaluated when comoving scale k = aH crosses horizon

i.e., this relates k to homogeneous a, φ values3
0



Underlying physical question:

how do cosmic properties–e.g., H, ρ ≈ V –change

while the universe inflates as it slowly rolls?

• if no change → φ̇ = 0 → same V,H always → ǫ = 0

all scales see same U when leaving horizon k = aH

→ all scales have same quantum fluctuations

• but slow roll 6= no roll!

φ̇ 6= 0 → U properties do change

recall: δ2inf(k) ∝ V/ǫ

and as slowly roll → V decreasing, ǫ increasing

and horizon scale dH,com also decreases

Q: so which scales get larger perturbations? smaller?

3
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because V decreasing, ǫ increasing

δ2inf(k) ∝ V/ǫ decreases with time

→ smaller perturbations later in slow roll

since horizon scale dH,com decreases

later times ↔ smaller scales

⇒ slow roll → smaller perturbations on smaller scales

⇒ perturbation spectrum tilted to large scales → small k

in slow roll, k = aH change mostly due to a:

d ln k ≈ d ln a =
da

a
= H dt (35)

recast in terms of inflaton potential

=
Hdφ

φ̇
= −3

H2

V ′
dφ (36)3
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and so

d

d ln k
= −m2

pl
V ′

V

d

dφ
(37)

Using this, can show:

α(k) =
d ln δ2inf(k)

d ln k
= −6ǫ+2η (38)

i.e., perturbation spectrum δ2inf(k) ∝ k−6ǫ+2η

Major result!

Q: why? what does this mean physically? for cosmology? for

inflation?
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