Astro 507 Lecture 32 April 14, 2014

Announcements:

- Preflight 6 (last one!) due Friday 9am
- yet another awesome cosmology bigshot talk tomorrow: Astronomy Colloquium, 4pm Tuesday April 14
 Nick Gnedin, Fermilab and U. Chicago
 "Simulating Reionization: Yesterday, Today, Tomorrow"

Last time: inflation perturbed

Q: quantum mechanics of inflaton field ϕ ?

Q: "confinement" region for ϕ ?

Q: mean value of $\langle \phi \rangle$? $\langle \delta \phi \rangle$?

Q: what is fate of fluctuation born at comoving scale λ_{com} ?

Q: inflation perturbations vs Hawking radiation?

Inflation and Quantum Fluctuations

```
decompose \phi(\vec{x},t) = \phi_{\text{cl}}(t) + \delta\phi(\vec{x},t)
with \langle \phi \rangle = \phi_{\text{cl}} and \langle \delta\phi \rangle = 0
but quantum fluctuations have \langle (\delta\phi)^2 \rangle \neq 0
```

causal physics operates on scales inside the (comoving) Hubble length $d_{H,\text{com}} = 1/aH$

so inflaton field effectively "confined" to $\delta x_{\rm com} \sim d_{H,\rm com}$ \to expect quantum energy fluctuation $\Delta E \sim c \Delta p \sim \hbar/d_H \sim \hbar H$

quantum mechanics generates inflaton perturbations

- in static universe, these average to zero
- \bullet but during inflation, $H\approx const$ and $a\approx e^{Ht}$
- when fluctuation of scale $\lambda_{\rm com}=1/k_{\rm com}>d_{H,{\rm com}}$ "leaves horizon" and becomes "frozen in" as real perturbation
- comoving Hubble length $d_{\rm H,com} \propto e^{-Ht}$ shrinks ever smaller scales leave horizon

Evolution of Quantum Perturbations

Write spatial fluctuations in inflaton field as sum (integral) of Fourier modes:

$$\delta\phi(t,\vec{x}) = \sum_{\vec{k}} \delta\phi_{\vec{k}}(t) e^{i\vec{k}\cdot\vec{x}_{\text{com}}}$$
 (1)

where $k = k_{\text{com}} = 2\pi/\lambda_{\text{com}}$ is comoving wavenumber

classical part of $\delta\phi_{\vec{k}}$ inflated away but quantum part crucial, persists during inflation

in Director's Cut notes:

- inflaton field begins in vacuum state
- evolves as a *quantum harmonic oscillator*
- → dominated by vacuum=ground state

Q: wavefunction of ground state harmonic oscillator?

Q: probability of finding particle at x?

Q: implications for inflaton fluctuations?

Inflation Spectrum Statistical Properties

- * Recall: inflaton quantum modes \leftrightarrow harmonic oscillator dominated by vacuum \leftrightarrow ground state $\|\psi_{\rm sho}(x)\|^2 \sim e^{-x^2/2\Delta x^2}$ $\phi_k \leftrightarrow x$ fluctuations are statistically Gaussian i.e., perturbations of all sizes occur, but probability of finding perturbation of size $\delta(R)$ on scale R is distributed as a Gaussian
- ★ inflaton perturbations → reheating → radiation, matter perturbations same levels in both: "adiabatic"
- ***** All of these are bona fide predictions of inflation and are testable! Q: how?

Slow Roll and Scale Dependence

Last time, and in Extras today: dimensionless fluctuation amplitude (variance) at comoving wavenumber $k = k_{\text{com}}$

$$\Delta^{2}(k) \sim \left(\frac{\delta\rho}{\rho}\right)_{k} \sim \left(\frac{H^{2}}{m_{\text{pl}}^{2}}\right) \left(\frac{H}{\dot{\phi}}\right)_{aH=k}^{2} \sim \left(\frac{V}{\epsilon m_{\text{pl}}^{4}}\right)_{aH=k} \tag{2}$$

evaluated at "horizon crossing" aH = k

Q: how does aH change during inflation?

Q: for slow roll, how does $\Delta^2(k)$ change with scale?

Inflation Spectrum Slightly Tilted Scale Invariance

recall: perturbation leaving horizon have very similar amplitude during inflation \to nearly same for all lengthscales $\leftrightarrow k$ perturbation rms amplitude

$$\delta_{\inf}^2(k) \propto k^{-6\epsilon + 2\eta} \tag{3}$$

- * successful inflation \Leftrightarrow slow roll $\Leftrightarrow \epsilon, \eta \ll 1$ demands perturbation spectrum nearly independent of scale nearly "self-similar," without characteristic scale "Peebles-Harrison-Zel'dovich" spectrum
- * successful inflation must end $\rightarrow \epsilon, \eta \neq 0$ demands small departures from scale-invariance "tilted spectrum"

Gravity Waves: Tensor Perturbations

★ so far: only looked at density (scalar) perturbations but also tensor perturbations → gravity waves!

what's really going on: $cosmic\ metric$ is perturbed spatial part (in a particular coordinate system = gauge):

• unperturbed = FLRW

$$d\ell^{2}|_{\mathsf{FLRW}} = a(t)^{2} (dx^{2} + dy^{2} + dz^{2}) = a(t)^{2} \delta_{ij} dx_{i} dx_{j}$$
 (4)

with perturbations

$$d\ell^2|_{\text{pert}} = a(t)^2 e^{2\zeta} \gamma_{ij} dx_i dx_j \tag{5}$$

with curvature perturbation the scalar function $\zeta(\vec{x},t)$

Q: what it its physical effect?

perturbed metric

$$d\ell^2|_{\text{pert}} = a(t)^2 e^{2\zeta} \gamma_{ij} dx_i dx_j \tag{6}$$

curvature perturbation scalar function $\zeta(\vec{x},t)$ changes local volume

→ locally: isotropic stretching

tensor perturbation is, to lowest order

$$\gamma_{ij} \approx \begin{pmatrix} 1 + h_{+} & h_{\times} & 0 \\ -h_{\times} & 1 - h_{+} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \delta_{ij} + \begin{pmatrix} h_{+} & h_{\times} & 0 \\ -h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(7)

with two independent modes of amplitude h_+, h_\times

Q: physical effect of these modes?

tensor perturbation is, to lowest order

$$\gamma_{ij} \approx \delta_{ij} + \begin{pmatrix} h_{+} & h_{\times} & 0 \\ -h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(8)

looks like rotation: roughly speaking preserves volume but changes angles

moreoever: h satisfies massless wave equation!

 $h \Leftrightarrow \text{gravitational radiation}$

effect on a ring of test particles:

gravity wave incident through page

Metric Flucuations

tensor perturbations directly are metric perturbation what about the inflaton perturbations?

curvature perturbation in an invariant (coordinate independent):

$$\zeta = \Phi + H\delta t = \Phi + H\frac{\delta\phi}{\dot{\phi}} \tag{9}$$

 $\Phi(\vec{x},t)$ is local gravitational potential perturbation

inflation fluctuations ϕ also are metric perturbations but amplitude differs from gravity wave amplitude by factor $H/\dot{\phi}$

and thus scalar perturbation variance differs by factor

$$r = \frac{\Delta_h^2}{\Delta_\Phi^2} \sim \left(\frac{\dot{\phi}}{H}\right)^2 \sim \epsilon \tag{10}$$

Inflationary Tensor Perturbations

variance as a function of scale (wavenumber)

$$\Delta_h^2(k) \sim \left(\frac{V}{m_{\rm pl}^4}\right)_{aH=k}$$
 (11)

- ullet evaluated at "horizon crossing" aH=k
- directly probes inflation potential $V(\phi)$!
- compare to density ("scalar") perturbations: tensor-to-scalar ratio

$$r = \frac{\Delta_h^2}{\Delta_\Phi^2} = 16\epsilon \tag{12}$$

• for $\epsilon \ll 1$, expect $r \ll 1$: scalar dominates

Testing Inflation: Status to Date

test by measuring density fluctuations and their statistical properties on various scales at various epochs

CMB at large angles (large scales, decoupling)

- nearly scale invariant! woo hoo! (COBE 93)
- Gaussian distribution (COBE, WMAP) www: 3-yr WMAP T distribution or nearly so...see Yadav & Wandelt (2007)
- WMAP, Planck: evidence for tilt! favors large scales ("red")! Planck (2013): $\alpha = -0.0397 \pm 0.0073$ nonzero at $\sim 5\sigma$!

These did not have to be true!

Not guaranteed to be due to inflation but very encouraging nonetheless

Inflation Scorecard

Summary:

Inflation designed to solve horizon, flatness, smoothness does this, via accelerated expansion driven by inflaton

But unexpected bonus: structure inflaton field has quantum fluctuations imprinted before horizon crossing later return as density fluctuations

→ inflationary seeds of cosmic structure?!

Thus far: observed cosmic density fields have spectrum, statistics as predicted by inflation

As of March 17, 2014: gravity wave background too (?!) probed by CMB polarization! all eyes on other polarization experiments!

Director's Cut Extras

Fluctuation Spectrum: In More Detail

Starting point of more rigorous treatment in equation of motion

$$\ddot{\phi} + 3H\dot{\phi} - \nabla^2\phi + V'(\phi) = 0 \tag{13}$$

write field as sum

$$\phi = \phi_{\text{classical}}(t) + \delta\phi(t, \vec{x}) \tag{14}$$

- classical amplitude $\phi_{\rm cl}(t)$ spatially homogeneous: smooth, classical, background field evolves according to classical equation of motion \rightarrow this has been our focus thus far; now add
- quantum fluctuations $\delta\phi(t,\vec{x})$ these can vary across space and with time

decompose spatial part of fluctuations into plane waves

$$\delta\phi(t,\vec{x}) = \sum_{\vec{k}} \delta\phi_{\vec{k}}(t) e^{i\vec{k}\cdot\vec{x}_{\text{com}}}$$
 (15)

convenient to label Fourier modes by comoving wavelength $\lambda \equiv \lambda_{\text{com}}$, wavenumber $k \equiv k_{\text{com}} = 2\pi/\lambda_{\text{com}}$ but physical wavelength $\lambda_{\text{phys}} = a\lambda_{\text{com}}$, wavenumber $k_{\text{phys}} = k/a$

as long as quantum perturbations $\delta\phi$ small (linear evolution) each wavelength—i.e., scale—evolves independently \rightarrow main reason to use Fourier modes

classically $\delta \phi = (\delta \phi)^2 = 0$ by definition! Q: what is physical significance of quantum excitations in ϕ ?

The Quantum Inflaton Field

quantum mechanically:

- ullet true ϕ has fluctuations around background value
- each \vec{k} mode \leftrightarrow independent quantum states (oscillators)
- ullet mode fluctuations *quantized* o quanta are inflaton particles analogous to photons as EM quanta
- \bullet occupation numbers: $n_{\vec{k}}>0$ \rightarrow real particles present
- if $n_{\vec{k}}=0 \to \langle \delta \phi \rangle = 0$ no particles (vacuum/ground state) but zero-point fluctuations still present $\left< \delta \phi^2 \right> \neq 0$

Fluctuation Lagrangian

expand each \vec{k} mode around classical value

$$\mathcal{L}_{\vec{k}} = \frac{1}{2} \delta \dot{\phi}_{\vec{k}}^2 - \frac{1}{2} \frac{k^2}{a^2} \delta \phi_{\vec{k}}^2 - \frac{1}{2} V''(\phi_{\text{cl}}) \delta \phi_{\vec{k}}^2 - V(\phi_{\text{cl}})$$
 (16)

$$\approx \frac{1}{2}\dot{\delta\phi}_{\vec{k}}^2 - \frac{1}{2}\frac{k^2}{a^2}\delta\phi_{\vec{k}}^2 \tag{17}$$

where slow roll \rightarrow potential terms small

→ a massless simple harmonic oscillator

 $\delta\phi$ vacuum state: zero point fluctuations formally same a quantum harmonic oscillator! for each k mode, fluctuation amplitudes random but probability distribution is like n = 0 oscillator

$$P(\delta\phi_{\vec{k}}) \propto e^{-\delta\phi_{\vec{k}}^2/2\sigma_{\vec{k}}^2} \tag{18}$$

where variance $\sigma_{\vec{k}}^2=\left<\delta\phi_{\vec{k}}^2\right>$ \to vacuum fluctuation amplitudes have *gaussian* distribution

Total ϕ energy density is $\rho_{\phi} = \rho_{\text{background}} + \rho_{\text{zeropoint}} + \rho_{\text{particles}}$ pre-inflation: could have $\rho_{\text{particles}} \neq 0$ in fact: if thermalized, $\rho_{\text{particles}} \propto T^4$ (radiation) \rightarrow inflation only begins when $\rho_{\text{background}} \gg \rho_{\text{particles}}$ Q: what happens to inflatons after inflation begins?

after inflation begins, universe rapidly expanded, cooled inflatons diluted away

→ inflation field driven to vacuum (ground) state

Since ϕ in quantum vacuum state: fluctuations are zero-point

- \rightarrow gaussian distribution of amplitudes in each k mode
- → strong prediction of slow-roll inflation

now want to solve for size of rms σ_k at each mode

classically, perturbations have equation of motion

$$\frac{d^2}{dt^2}\delta\phi + 3H\frac{d}{dt}\delta\phi + \frac{k^2}{a^2}\delta\phi + V''\delta\phi = 0$$
 (19)

$$\frac{d^2}{dt^2}\delta\phi + 3H\frac{d}{dt}\delta\phi + \frac{k^2}{a^2}\delta\phi \approx 0$$
 (20)

(in slow roll: V'' term negligible)

Sketch of Quantum Treatment

Promote $\delta\phi\to$ operator $\widehat{\delta\phi}$ plane wave expansion: $\widehat{\delta\phi}=\sum_{\vec{k}}\widehat{\delta\phi}_{\vec{k}}$ introduce annihilation, creation operators $\widehat{a}_{\vec{k}}$, $\widehat{a}^{\dagger}_{\ \vec{l}}$, then

$$\widehat{\delta\phi}_{\vec{k}} = w_k(t) \, \widehat{a}_{\vec{k}} + w_k^*(t) \, \widehat{a}_{-\vec{k}}^{\dagger} \tag{21}$$

where $w_k(t)$ is a solution of field equation

$$\ddot{w}_k + 3H\dot{w}_k + \left(\frac{k}{a}\right)^2 w_k = 0 \tag{22}$$

Compare limits:

- $k/a\gg H\to k\gg aH\to \lambda\ll 2\pi d_{H,\text{com}}$ Q: physical interpretation of limit? w_k evolves as harmonic oscillator (free massless field)
- $k/a \ll H \rightarrow k \ll aH \rightarrow \lambda \gg 2\pi d_{H,\text{com}}$ Q: physical interpretation of limit? $\dot{w}_k \propto a^{-3} \rightarrow 0 \rightarrow w_k$ value "frozen"

Inflation Perturbations: Evolution and Horizons

sub-horizon scales $\lambda \ll 2\pi d_{H,\text{com}}$

inflaton fluctuations $\delta\phi$ are causally connected evolve like harmonic oscillator \to rms amplitude $\left<|w_k|^2\right>$ constant

but cosmic acceleration during inflation $\to d_{H,\text{com}}$ shrinks since $\dot{d}_{H,\text{com}} = d(aH)^{-1}/dt = d(\dot{a}^{-1})/dt = -\ddot{a}/\dot{a}^2 < 0$ during inf $d_{H,\text{com}}$ shrinkage: initially sub-horizon scales \to super-horizon

super-horizon scales $\lambda \gg 2\pi d_{H,\text{com}}$

fluctuations out of causal contact amplitude "frozen in" until post-inflation $d_{H, {
m com}}$ regrows

Inflation Perturbations: Spectrum of Amplitudes

examine fluctuations from vacuum

 \rightarrow find expected amplitudes w_k

since fluctuations have quantum origin

- cannot predict definite values for mode amplitudes, phases
- but can predict statistical properties

for *different* modes \vec{k} and \vec{k}' ,

Q: what do we expect?

for *different* modes \vec{k} and \vec{k}' , expectation is

$$\langle \widehat{\delta \phi}_{\vec{k}} \widehat{\delta \phi}_{\vec{k}'} \rangle = w_k w_{k'} \langle \widehat{a}_{\vec{k}} \widehat{a}_{\vec{k}'}^{\dagger} \rangle + \text{c.c.} = 0$$
 (23)

because $\left\langle \hat{a}_{\vec{k}} \hat{a}_{\vec{k}'}^{\dagger} \right\rangle = \left\langle \hat{a}_{\vec{k}} \right\rangle \left\langle \hat{a}_{\vec{k}'}^{\dagger} \right\rangle = 0$

⇒ modes are statistically independent

note: true even if $|\vec{k}|=|\vec{k}'|=k$ but $\vec{k}\cdot\vec{k}'=0$

i.e., different directions $\vec{k} = k\hat{x}, \vec{k}' = k\hat{y}$

 \Rightarrow phase $e^{i\vec{k}\cdot\vec{x}}$ is random

for a single mode k, vacuum expectation is

$$\langle \widehat{\delta \phi}_{\vec{k}}^2 \rangle = |w_k|^2 \langle \widehat{a} \widehat{a}^\dagger + \widehat{a}^\dagger \widehat{a} \rangle = |w_k|^2 \neq 0$$
 (24)

$$= \frac{H^2}{2L^3k^3} \tag{25}$$

where last expression

- $^{\circ}$ from full quantum calculation, in box of size L
 - ullet to be evaluated at horizon crossing: $k_{\mathrm{phys}} = H
 ightarrow k = aH$

each in phase space volume

$$d^{3}xd^{3}k = \frac{1}{(2\pi L)^{3}} 4\pi k^{2}dk = \frac{4\pi k^{3}}{(2\pi L)^{3}} \frac{dk}{k}$$
 (26)

then fluctuation amplitude is

$$P_{\phi}(k)\frac{dk}{k} \equiv \frac{4\pi k^3}{(2\pi L)^3} |\delta\phi_k|^2 \frac{dk}{k} = \left(\frac{H}{2\pi}\right)^2 \frac{dk}{k} \tag{27}$$

and so the phase space fluctuation density in ϕ is

$$P_{\phi}(k) = \left(\frac{H}{2\pi}\right)_{k=aH}^{2} \tag{28}$$

as before, but now

- ullet explicitly seen independence of k
- ullet know when to evaluate: at horizon crossing k=aH

Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale $\lambda=2\pi/k$ key idea: causal physics acts until $\lambda>d_{\rm H,com}$: "horizon crossing" \rightarrow quantum fluctuations laid down while inside $d_{\rm H,com}$ "frozen in" once outside of $d_{\rm H,com}$

from last time: quantum analysis gives fluctuation variance

$$\left\langle (\delta \phi_k)^2 \right\rangle = \left(\frac{H}{2\pi}\right)_{k=aH}^2 \tag{29}$$

to be evaluated at horizon crossing: $k = 1/d_{H,com} = aH$

Fluctuation Evolution and Spectrum

consider some fixed (comoving) scale $\lambda=2\pi/k$ key idea: causal physics acts until $\lambda>d_{\rm H,com}$: "horizon crossing" \rightarrow quantum fluctuations laid down while inside $d_{\rm H,com}$ "frozen in" once outside of $d_{\rm H,com}$

from last time: quantum analysis gives fluctuation variance

$$\left\langle (\delta \phi_k)^2 \right\rangle = \left(\frac{H}{2\pi}\right)_{k=aH}^2 \tag{30}$$

to be evaluated at horizon crossing: $k = 1/d_{H,com} = aH$

Inflationary Density Perturbations: Spectrum

Recall: density fluctuations \rightarrow start inflating earlier (later) \rightarrow more (less) expansion than average extra scale factor boost $\delta a/a = H\delta t = H\delta\phi/\dot{\phi} \rightarrow$ larger volume \rightarrow density perturbations have mean square

$$\delta_{\inf}^{2}(k) \equiv \left(\frac{\delta\rho}{\rho}\right)_{k}^{2}$$

$$\sim \left(\frac{\delta a}{a}\right)^{2} = \left(\frac{H}{\dot{\phi}}\right)^{2} (\delta\phi)^{2} = \left(\frac{H}{\dot{\phi}}\right)^{2} \left(\frac{H}{2\pi}\right)^{2}$$
(31)

evaluated at aH = k

slow roll: H, $\dot{\phi}$ slowly varying \to expect fluctuation amplitude $\sim H^4/\dot{\phi}^2 \sim const$ over wide range of k

In particular: slow roll $\dot{\phi} = -3V'/H$, and $H^2 = V/3m_{\rm pl}^2$, which gives

$$\delta_{\inf}^{2}(k) = \frac{1}{12\pi^{2}m_{\text{pl}}^{6}} \left(\frac{V^{3}}{V'^{2}}\right) = \frac{1}{24\pi^{2}m_{\text{pl}}^{4}} \left(\frac{V}{\epsilon}\right)$$
(33)

where $\epsilon = m_{\rm pl}(V'/V)^2/2$

anticipating \sim power law behavior, define $\delta_{\inf}^2(k) \sim k^{\alpha(k)}$

then scale dependence is

$$\alpha(k) = \frac{d \ln \delta_{\inf}^2(k)}{d \ln k} \tag{34}$$

evaluated when comoving scale k=aH crosses horizon i.e., this relates k to homogeneous a, ϕ values

Underlying physical question: how do cosmic properties—e.g., $H, \rho \approx V-change$ while the universe inflates as it slowly rolls?

- if no change $\rightarrow \dot{\phi}=0$ \rightarrow same V,H always $\rightarrow \epsilon=0$ all scales see same U when leaving horizon k=aH \rightarrow all scales have same quantum fluctuations
- but $slow roll \neq no roll!$ $\dot{\phi} \neq 0 \rightarrow U$ properties do change

recall: $\delta_{\inf}^2(k) \propto V/\epsilon$ and as slowly roll $\to V$ decreasing, ϵ increasing and horizon scale $d_{H,\text{com}}$ also decreases Q: so which scales get larger perturbations? smaller?

because V decreasing, ϵ increasing $\delta_{\inf}^2(k) \propto V/\epsilon$ decreases with time \to smaller perturbations later in slow roll since horizon scale $d_{H,\text{com}}$ decreases later times \leftrightarrow smaller scales

- \Rightarrow slow roll \rightarrow *smaller* perturbations on *smaller* scales
- \Rightarrow perturbation spectrum *tilted* to large scales \rightarrow small k

in slow roll, k = aH change mostly due to a:

$$d\ln k \approx d\ln a = \frac{da}{a} = H \ dt \tag{35}$$

recast in terms of inflaton potential

$$=\frac{Hd\phi}{\dot{\phi}} = -3\frac{H^2}{V'}d\phi \tag{36}$$

and so

$$\frac{d}{d \ln k} = -m_{\rm pl}^2 \frac{V'}{V} \frac{d}{d\phi} \tag{37}$$

Using this, can show:

$$\alpha(k) = \frac{d \ln \delta_{\inf}^2(k)}{d \ln k} = -6\epsilon + 2\eta \tag{38}$$

i.e., perturbation spectrum $\delta_{\inf}^2(k) \propto k^{-6\epsilon+2\eta}$

Major result!

Q: why? what does this mean physically? for cosmology? for inflation?