Astro 507 Lecture 33 April 16, 2010

Announcements:

Preflight 6 (last one!) due Friday 9am

Last time: finished inflation early U quantum fluctuations \rightarrow cosmic density perturbations "The Universe is the ultimate free lunch."

- Alan Guth

The rest of the course:

□ formation of cosmic structure

The Inhomogeneous Universe

Origin and Evolution of Cosmic Structure

The Large-Scale Structure of the Universe Theoretical and Observational Landscape

On large scales, cosmo principle an excellent approximation On small scales, fails miserably

Cosmology should explain both: now open our eyes to structure

Theory Goals? tools? complications? Which scales in space, time "easy" to describe? which difficult?

Observations

Goals? observables? complications? Which scales in space, time "easy" to measure? which difficult?

Arenas for theory—observation comparison

Which well-matched (i.e., clear results from both)? Which poorly-matched (i.e., one or both ambiguous/difficult)? What constitutes success? When are we done?

Large-Scale Structure: The Good, the Bad, and the Ugly

Structure Formation Theory

Goal: describe how small density fluctuation "seeds" grow to form structure today

Tools: baryon-DM-radiation-DE particle & fluid dynamics in expanding FLRW background analytic—linearized perturb theory, idealized nonlinear models numerical—full nonlinear evolution, feedback effects

Complications: nonlinear processes (virialization, shocks, star feedback)

Degree of Difficulty:

large scales easiest—smoothest, linear perturb theory accurate smallest scales hardest—very nonlinear

Structure Formation Observations

```
Goal: measure growth of structures over cosmic history
Tools: CMB anisotropy
surveys (optical, X-ray, IR, radio, \gamma-ray...): galaxies, quasars,
 QSO absorption systems, lensing
Complications: need for statistical completeness
 vs sensitivity, resolution
large scales easy in some ways: CMB very clean
 galaxy, quasar statistics best over largest volumes
...but difficult in others: sensitivity, resolution lowest
 few independent samples of structure at largest scales
  "cosmic variance" (e.g., see many 10 Mpc regions,
   only one at 4 Gpc)
 reshifting, absorption present challenges
 only a few epochs accessible
small scales easy in some ways: can probe locally
 sample many independent regions
 accessible at different epochs
...but difficult in others: hard to measure at large z
```

Comparing Theory and Observation

Strong Tests

well-matched at large scales: linear theory accurate, observations (esp CMB) clean

Mismatches

Theory naturally describes density evolution dominated by dark matter—invisible!

Observations naturally look at light easiest to look at most nonlinear, baryonic systems

Problem: mass vs light disconnect

"bias" – rarest=largest structures easiest to see and baryons collisional, dissipative

→ more spatially concentrated that DM (think halos!)

Also: most light from stars—but theory of star form incomplete and uncertain

⇒ this is the frontier!

Quantifying Large-Scale Structure

Observed galaxy distribution random

- location, form of individually galaxies unpredictable but clearly correlations, characteristic scales
- > reflects randomness of initial conditions
- demands a fundamentally statistical treatment

Statistical description of cosmic density fields

consider, e.g., mass density $\rho(t, \vec{x})$ not only random, but also continuous yet most observations are of discrete objects galaxies, clusters, etc.

how to address this?

Attempt I: Fluctuations of Counts in Cells

fix a lengthscale $L \to \text{volume } V = L^3$ divide patch of U. into cells of this size

then can define avg density $\langle \rho_i \rangle$ in each box i or more observationally: galaxy count N_i in box then look at statistical properties of N_i distribution

assume: different boxes $\langle \rho_i \rangle$, $\langle \rho_k \rangle$ initially independence lost Q: why?

but want a characterization in which different elements ("realizations") are independent

 $_{\infty}$ Q: how to do this?

Problem: neighboring cells affect each other e.g., overdensities drain underdensities next door → evolution immediately couples cells

Attempt II: Fourier Analysis

Can decompose $\rho(t, \vec{x})$ into plane waves in linear theory: different k evolve independently i.e., small perturbations do not interact \rightarrow adopt Fourier analysis

Experts note here and throughout: plane-wave expansion implicitly assumes background FRW space is flat, i.e., Euclidean, uncurved, $\kappa=0$ if global curvature $\kappa\neq 0$ exists: need generalization for curved space key idea: appropriate modes are eigenfunctions of the Laplacian operator

Quantifying Density Fluctuations

Given $\rho(t,\vec{x})$, define mean (average) density $\langle \rho \rangle = \langle \rho(t,\vec{x}) \rangle = \rho_{\text{FRW}}(t)$ (suppress t hereafter) density fluctuation $\delta \rho(\vec{x}) = \rho(\vec{x}) - \langle \rho \rangle$ density contrast

$$\delta(\vec{x}) = \frac{\delta\rho}{\rho} = \frac{\rho(\vec{x}) - \langle\rho\rangle}{\langle\rho\rangle} \tag{1}$$

where $\delta \neq \delta_{\text{Dirac}}!$

Q: possible range of δ values?

Q: what is $\langle \delta \rangle$?

Q: how does cosmic expansion affect δ ?

key measure of cosmic structure: density contrast

$$\delta(\vec{x}) = \frac{\delta\rho}{\rho} \equiv \frac{\rho(\vec{x}) - \langle\rho\rangle}{\langle\rho\rangle} \in (-1, \infty)$$
 (2)

$$\delta_{\vec{k}} = \frac{1}{V} \int \delta(\vec{x}) e^{i\vec{k}\cdot\vec{x}} d^3\vec{x}$$
 (3)

where average is over large volume V

Q: what is the order-of-magnitude of the density contrast in this room? of the Galactic ISM?

by definition:
$$\langle \delta \rangle = \frac{1}{V} \int d^3x \, \delta(\vec{x}) = 0$$

would like to study structures on different cosmic lengthscales λ Q: how to do this using density contrast?