Astro 507 Lecture 7 Feb. 5, 2014

Announcements:

- PS1 due next time
- Office Hours: 3-4 pm Thursday, or by appointment

Last time: Friedmann and the contents of the universe

- $\triangleright \rho_{crit}$ Q: definition? interpretation? how measure?
- $\triangleright \Omega$ and Ω_i Q: definition? interpretation? how measure?
- \triangleright radiation: λ response to expansion?
 - a vs z relation?
- $\rho_{\mathsf{rad}}(a)$? T(a)?

Radiation and Friedmann

definition: to cosmologist, radiation \equiv relativistic matter photons or any particle with $v\sim c,~E\sim T\gg mc^2$ energy density $\varepsilon_{\rm rad}\propto a^{-4}$

equivalent gravitational mass density: $\varepsilon = \rho c^2 \rightarrow \rho_{\rm rad} \propto a^{-4}$

Add radiation to Friedmann:

$$\rho = \rho_{\rm total} = \rho_{\rm m} + \rho_{\rm rad} = \rho_0 (\Omega_{\rm m,0} a^{-3} + \Omega_{\rm r,0} a^{-4})$$
 note: today, $\Omega_{\rm r,0} = 4.15 \times 10^{-5} h^{-2} \ll 1$

Also: Maxwell says pressure $P_{\text{EM}} = \varepsilon_{\text{EM}}/3$

- include this in Friedmann acceleration
- put $V=a^3$, so $\varepsilon \propto V^{-4/3}$, and

$$d(\varepsilon_{\text{rad}}V) = -1/3 \ \varepsilon \, dV = -p_{\text{rad}} \, dV$$

Q: physical interpretation?

1st Law and Equation of State

Generalize: Cosmological "1st Law of Thermodynamics"

$$d(\rho c^2 a^3) = -p \ d(a^3) \tag{1}$$

GR verifies this is correct!

 \Rightarrow reconciles Friedmann energy, accel eqs: ensures that $\ddot{a}=d\dot{a}/dt$ (try it!)

to solve, need to relate p to $\rho c^2 \rightarrow$ equation of state

- non-rel matter: $p_{\rm m} \ll \rho_{\rm m} c^2 \approx 0$ Q: why? e.g., ideal gas?
- radiation: $p_{\text{rad}} = \rho_{\text{rad}} = \rho_{\text{rad}} c^2/3$
- generalize: $p = w\rho c^2$ defines "state parameter" w Q: $w_{\rm matter}$?, $w_{\rm rad}$?

Can solve 1st Law eq for matter with constant w:

$$\rho_{\mathbf{w}} \propto a^{-3(1+\mathbf{w})} \tag{2}$$

Q: what if w = 0, +1/3, -1?

 ω

Cosmological Constant

Einstein (1917) "cosmological constant" \(\Lambda \)
a new constant of nature

acts as substance with w = -1

- $p_{\Lambda} = -\rho_{\Lambda}c^2 < 0$!? negative pressure !?!
- $\rho_{\Lambda} \propto a^0 = const$ constant energy density (and pressure) !?! i.e., expansion does not change ρ_{Λ} , p_{Λ} ! "vacuum energy"

Cosmodynamics in a Minimally Realistic(?) Universe

For sure, the universe contains:

- Matter Q: evidence? $\rho_{\rm m} \propto a^{-3}$
- Radiation *Q*: evidence? $\rho_{\rm r} \propto a^{-4}$

Quite possibly, the universe could contain:

- Curvature curvature term $\propto a^{-2}$
- Cosmo Const (or worse!) $\rho_{\Lambda} \propto a^0 = const$
- ^o So: "minimal" but also "realistic" account of U must include these pieces: $ρ = ρ_{tot} = Σ_i ρ_i$

then Friedmann sez:

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \left(\rho_{r,0}a^{-4} + \rho_{m,0}a^{-3} + \rho_{\Lambda}\right) - \frac{\kappa c^{2}}{R^{2}}a^{-2}$$
$$= H_{0}^{2} \left[\Omega_{r}a^{-4} + \Omega_{m}a^{-3} + \Omega_{\Lambda} + (1 - \Omega_{\text{tot}})a^{-2}\right]$$

Q: limiting cases?

Limiting cases: one term \gg all others component i dominates when

$$\rho_{\text{tot}} \approx \rho_i \gg \rho_{\text{other}}$$
(3)

• radiation-dominated: $a_{\rm rd} \sim t^{1/2}$

- matter-dominated: $a_{md} \sim t^{2/3}$
- curvature-dominated $\kappa = -1$; Q: why? $a_{\rm cd} \propto t^1$
- Λ -dominated: $a_{\lambda d} \propto e^{+H_{\Lambda}t}$

Q: which component most important at early times? late times?

The Cosmic Past

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} (\rho_{r} + \rho_{m} + \rho_{\Lambda}) - \frac{\kappa c^{2}}{R^{2}} a^{-2}$$
$$= \frac{8\pi G}{3} (\rho_{r,0} a^{-4} + \rho_{m,0} a^{-3} + \rho_{\Lambda}) - \frac{\kappa c^{2}}{R^{2}} a^{-2}$$

Mix-n-match:

Q: evolution if only matter & rad? Ω ?

Q: ... if matter, rad, and $curv(\pm)$? Ω ?

 $Q: \dots$ if matter, rad, and Λ ? Ω ?

 $Q: \dots$ if matter, rad, curv, and Λ ? Ω ?

Menu at Al Friedmann's Cosmo Café

Possible Histories of the Universe

```
Matter + Radiation only: (\Omega = 1)
   rad-dom → matter-dom; expand forever
Matter + Radiation + Curvature(-): (\Omega < 1)
    RD \rightarrow MD \rightarrow CD; expand forever
Matter + Radiation + Curvature(+): (\Omega > 1)
    RD \rightarrow MD \rightarrow CD \rightarrow reverse; recollapse
Matter + Radiation + \Lambda: (\Omega = 1)
   RD \rightarrow MD \rightarrow \Lambda D: expand forever exponentially!
Matter + Radiation + \Lambda + curv: (\Omega \neq 1)
   many possibilities! fate depends on detailed composition
```

Radiation and the Early Universe

note: radiation always wins out at early times

⇒ Early U is radiation-dominated

Q: why?

later evolution (which components dominate) depends on cosmic ingredients and their relative amounts

Density and Destiny

Enough generalities! What about *our* real Unvierse? Fate (and geometry) of U. depend on current values of $\Omega_{i,0}=\rho_{i,0}/\rho_{\rm crit,0}$ and $\Omega_0=\sum\Omega_i$ where

$$ho_{\rm crit,0} = rac{3H_0^2}{8\pi G}$$

$$= 1.9 \times 10^{-29} \ h^2 \ {\rm g/cm^{-3}} \approx 10^{-29} \ {\rm g/cm^{-3}}$$

$$= 2.78 \times 10^{11} \ h^2 \ M_{\odot} \ {\rm Mpc^{-3}} \approx 1.4 \times 10^{11} \ M_{\odot} \ {\rm Mpc^{-3}}$$

$$\approx 6 \ {\rm H\,atoms\,m^{-3}}$$

Empirical question:

- \bullet is $\rho_{\text{tot},0}$ bigger or smaller than this number?
 - density is destiny! weight is fate!

Cosmic Geometry and Evolution

Consider a universe with $\Omega \neq 1$

Friedmann says

$$\Omega(t) - 1 = \frac{\kappa c^2}{R^2 a^2 H^2} = \frac{\kappa c^2}{R^2 \dot{a}^2} \propto \frac{1}{\dot{a}^2}$$
 (4)

i.e., Ω changes with time

Q: is $|\Omega - 1|$ increasing or decreasing?

Q: limiting values of Ω at large t?

Q: physical interpretation of these limits?

Q: timescale for Ω to change?

 \square Q: implications for Ω_0 ?

The Evolution of Ω

Time change of $|\Omega - 1| \propto 1/\dot{a}^2$ is

$$\frac{1}{|\Omega - 1|} \frac{d}{dt} |\Omega - 1| = \dot{a}^2 \frac{d}{dt} \frac{1}{\dot{a}^2} \tag{5}$$

$$= -2 \frac{\ddot{a}/a}{H^2} H = 2 q H \tag{6}$$

where acceleration parameter $q = -(\ddot{a}/a)/H^2$ Q: why sign choice in q definition?

- generally, $|q|\sim 0.1-10$, so $|\Omega-1|$ changes on timescale $1/2|q|H\sim 1/H=t_H\sim t$
- if $\ddot{a}<$ 0: ordinary attractive gravity, decelerating U then $|\Omega-1|$ increasing with time
 - $\rightarrow \Omega$ driven increasingly away from 1

Q: unless...?

What is Ω_0 ?

Procedure 0: Pure Theory

$$\Omega = \rho/\rho_{\rm crit} \sim \rho(t)/H^2(t)$$
 evolves

- if ever $\Omega = 1$, stays 1 always
- otherwise: $\Omega \rightarrow 0$ or ∞
- physically: expand forever or recollapse
 occurs on cosmic timescale t: current age

 $\Omega = 1$ is the only stable value

do the experiment: look around room

$$\Omega \neq 0, \infty \rightarrow \Omega = 1$$
!

 $^{\mbox{\tiny G}}$ else conspiracy: we live just when $\Omega \sim 1$ "Dicke coincidence"

What is Ω_0 ?

Procedure I: Galaxy Surveys

Goal: measure $\rho_0 \rightarrow \inf \Omega_0$

Q: What is $\Omega_{\text{this room}}$?

Q: Why can't we use $\rho_{this room}$?

Q: What is needed?

Q: What do galaxy surveys actually measure?

Q: How can we bridge the gap?

Cosmic Density Measurement Procedure I: Mass-to-Light Ratios

Seems simple...

- 1. find fair sample of U., with some volume V
- 2. if measure total mass M, $\rightarrow \rho = M/V$

...but telescopes don't measure mass, rather: *luminosity L*

- 1. find cosmic luminosity density $\mathcal{L} = L/V$
- 2. then find cosmic ratio of mass to luminosity: mass-to-light ratio $M/L \equiv \Upsilon$
- 3. solve for mass density $\rho = \Upsilon \mathcal{L}$

Galaxy surveys: $\mathcal{L}_{obs} \sim 2 \times 10^8~h~L_{\odot}~{\rm Mpc^{-3}}$...which you will \sim verify in PS1!

Need "fair sample" of mass-to-light ratio Υ

Q: how to measure this?

cosmic mass/light sample: galaxies including dark halos

flat rotation curves $v(r) \sim const$

www: rotation curve

Newtonian gravity, dynamics apply:

circular motion: $v^2/r \sim g \sim GM_{\rm enclosed}(r)/r^2$

Q: expected behavior for r > visible matter?

Instead: find $v \approx const$ well beyond visible matter "flat rotation curves"

$$\Rightarrow M(r) \sim v^2 r/G \sim r \text{ for } r \gg r_{\text{vis}}!$$

dark halo! typically $M_{\text{halo}} \sim 5-10 M_{\text{vis}}$

summing observed light, total dynamical mass:

$$\Upsilon_{\mathsf{halo}} \lesssim 25 h M_{\odot}/L_{\odot} o \Omega_{\mathsf{halo}} \lesssim 0.02 \ll 1$$

Q: implications? what if this is a fair sample?

Q: why would/wouldn't it be?

cosmic mass/light sample: galaxy clusters

can find cluster $M_{\rm tot}$ from several methods e.g., www: cluster gravitational lens $\Upsilon_{\rm cluster} \sim 300 h \to \Omega_{\rm cluster} \sim 0.25 h^{-1} \sim 0.3$

Note: since $\Upsilon_{cluster} > \Upsilon_{halos}$

- → immediately conclude that *halos are not fair sample*
- \rightarrow i.e., halos miss extra dark matter on larger scales
- \rightarrow hints for galaxy formation...
- ...but clusters have $\delta \rho/\rho_0 \sim 1$
- → largest bound objects
- \rightarrow should be fair sample:
- $\Rightarrow \Omega_{\text{matter}} \sim 0.3 \text{ (including DM!)}$

Cosmic Density Measurement Procedure II: Microwave background anisotropies

CMB temperature anisotropies sensitive to cosmic geometry www: Planck 2013 results + other observations (BAO)

$$\Omega_{\kappa} \equiv 1 - \Omega_0 = 0.0005 \pm 0.0033$$

$$\Omega_0 = 1.0005 \pm 0.0033!$$

- $\Rightarrow \Omega_0 = 1$ to $\sim 0.3\%$ level!!!
- ⇒ a flat universe! theory prejudice correct!

but: $\Omega_{\text{matter}} \approx 0.27$ (including DM!) $\rightarrow \Omega_{\text{other}} = 0.73?!?$

 $\stackrel{>}{\sim}$ Who ordered that? What is the other, dominant component? Λ ? "dark energy" ?!?